Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E - Information Science \& Engineering
Semester:	4
Course Code:	18 CS42
Course Title:	Design and Analysis of Algorthim
Credit / L-T-P:	$4 / 3-2-0$
Total Contact Hours:	50
Course Plan Author:	Sandhya B R

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore - 560090, Karnataka, INDIA
Phone / Fax :08023721477/28392221/23721315
Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION 2

1. Course Overview 2
2. Course Content 3
3. Course Material 3
4. Course Prerequisites. 3
5. Content for Placement, Profession, HE and GATE.4
B. OBE PARAMETERS 4
6. Course Outcomes 4
7. Course Applications. 4
8. Articulation Matrix. 4
9. Curricular Gap and Content 5
C. COURSE ASSESSMENT. 5
10. Course Coverage 5
11. Continuous Internal Assessment (CIA).5
D1. TEACHING PLAN - 1 5
Module - 1 5
Module - 2 6
E1. CIA EXAM - 17
a. Model Question Paper - 1 7
b. Assignment -1 7
D2. TEACHING PLAN - 2 7
Module - 3 7
Module - 4 8
E2. CIA EXAM - 2 9
a. Model Question Paper - 2. 9
b. Assignment - 2 10
D3. TEACHING PLAN - 3 10
Module - 5 10
E3. CIA EXAM - 3 11
a. Model Question Paper - 3 11
b. Assignment - 3 11
F. EXAM PREPARATION 11
12. University Model Question Paper. 11
13. SEE Important Questions 12

A. COURSE INFORMATION

1. Course Overview

Degree:	BE		Program:	IS
Semester:	4		Academic Year:	2019-2020
Course Title:	DESIGN AND ALGORITHMS	ANALYSIS	${ }^{\text {OF }}$ Course Code:	18 CS 42
Credit / L-T-P:	4/3-2-0		SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours		SEE Marks:	60 Marks
CIA Marks:	40 Marks		Assignment	1 / Module
Course Plan Author:	Sandhya B R		Sign ..	Dt:
Checked By:			Sign ..	Dt:
CO Targets	CIA Target: 75%		SEE Target:	60\%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
1	Introduction: What is an Algorithm?(T2:1.1),Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω),Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3. 2.4).Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4)	10	$\begin{gathered} \mathrm{L} 4 \\ \text { Analyze } \end{gathered}$
2	Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3. 3.4), Merge sort, Quick sort (T1:4.1. 4.2) , Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3)	10	$\begin{gathered} \text { L4 } \\ \text { Analyze } \end{gathered}$
3	Greedy Method: General method, Coin Change Problem, Knapsack Probl em, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2) . Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4). Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4)	10	$\begin{gathered} \mathrm{L} 4 \\ \text { Analyze } \end{gathered}$
4	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5:1, 5.2) . Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4) , Travelling Sales Person problem (T2:5.9) . Reliability design (Tz:5.8).	10	$\begin{gathered} \text { L4 } \\ \text { Analyze } \end{gathered}$
5	Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1) , Sum of subsets problem (Ti:12.1), Graph coloring (T2:7.4) , Hamiltonian cycles (T2:7.5). Branch and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2) , 0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2) , FIFO Branch and Bound solution (T2:8.2). NP-Complete and NP Hard problems: Basic concepts, non deterministic algorithms, P, NP, NPComplete, and NP-Hard classes (T2:11.1) .	10	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
-	Total	50	L3-L4

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3,4 \\ 5 \end{gathered}$	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.	$\begin{gathered} 1,2,4,5,6 \\ 9,8,12 \end{gathered}$	In Lib / In Dept
$\begin{gathered} 1,2,3,4 \\ 5 \end{gathered}$	Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press	$\begin{gathered} 1,3,4,5,7,8 \\ , 11 \end{gathered}$	In Lib/ In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2,3	.Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI	$\begin{array}{\|c\|} \hline 1,2,3,4,5 \\ 6,7 \\ \hline \end{array}$	In Lib
4.5	Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education)	?	Not Available
C	Concept Videos or Simulation for Understanding	-	-
C1	Asymptotic Notations https://www.youtube.com/watch?v=OpebHLAfggY- 10.40 secs		
C2	Data Structures https://www.youtube.com/watch? $\mathrm{v}=\mathrm{FNZ509SgprU-5} \mathrm{Mins}$		
C3	Recurrence stratergy https://www.youtube.com/watch?V=XNAfl2sw/nY-11 . 40 Secs		
C4	Divide and Conquer technique https://www.youtube.com/watch?v=6SUmp_Cn-SU - 9 Mins		
C5	Greedy technique https://www.youtube.com/watch? $\mathrm{v}=\mathrm{ARvQcqJ}$ _-NY -10 Mins		
C6	Transform and conquer approach https://wwww.youtube.com/watch?v=fyzQcGUsVXk -11 Mins		
C7	Dynamic Programming technique https://www.youtube.com/watch?v=WxpIHvsu1RI -9 Mins		
C8	Branch Bound Techniques https://www.youtube.com/watch? $\mathrm{v}=3$ RBNPco_Q6g -10 Mins		
C9	Np-hard and Np-Complete problems https://www.youtube.com/watch?v=gq4K5hhilSE- 5 Mins		
C10	Back tracking-N Queens problem https://www.youtube.com/watch?V=3GqhzSnt2Gc -7 Mins		
D	Software Tools for Design	-	-
	Eclipse Juno		
E	Recent Developments for Research	-	-
	Formalization of Asymptotic Notations in HOL4 https://ieeexplore.ieee.org/abstract/document/8821642		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	Nptel videos for Asymptototic Notations https://www.youtube.com/watch? V=ELgT1ngiCqA		
2	Nptel videos for Minimum Spanning trees https://www.youtube.com/watch?v=kgjemw3SZeo		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content ...

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	$\begin{aligned} & \text { 17pcd13/ } \\ & 23 \end{aligned}$	C Programing	1. Knowledge on Data Structures	2		L4
2	17 Cs 33	Data Structure and Application	Knowledge of Data Structures Algorithm	3		L4
3	17Cs33	Data Structure and Application	Knowledge of Data Structures Algorithm	3		L4
4	17Cs36	Discrete Mathematics Structures	Knowledge of Graphs and Trees are required.	3		L4
5	17 Cs 33	Data Structure and Application	Knowledge of Data Structures Algorithm	3		L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks Level		
1	Brute Force Technique	Higher Study	Gap A seminar on Brute Force Technique	Understa nd L2	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Instr Method	$\begin{array}{\|c\|} \hline \text { Assessme } \\ \text { nt } \\ \text { Method } \\ \hline \end{array}$	Blooms' Level
1	18CS42.1	Analyze the computational complexity of different algorithms.	10	Black board /system	Test/ assignme nts	L4
2	18CS42.2	Apply and Analyze Divide and Conquer Strategy to solve problems	10	Black board /system	Test/ assignme nts	L4
3	18CS42.3	Apply and Analyze Optimization problems using Greedy strategy.	10	Black board /system	Test/ assignme nts	L4
4	18CS42.4	Apply and Analyze Optimization routes using Dynamic Programming strategy.	10	Black board /system	\qquad	L4
5	18CS42.5	Classify computational problems into P, NP, NP-Hard and NP-	10	Black board /system	Test/ assignme	L3

18CS42
Copyright ©2017. cAAS. All rights reserved.

		complete problems			nts	
-	-	Total	$\mathbf{5 0}$	Black board /system	Test/ assignme nts	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Able to Analyze a given algorithm and express its time and space complexity	CO 1	L 4
1	Facebook to Build database,	CO 1	L 3
2	Able to Solve recurrence equations	CO 2	L 3
2	efficient use of memory cache	CO 2	L 4
3	In the field of artificial intelligence, automatic speech recognition.	CO 3	L 4
3	In the implementation of Priority queue in graph algorithms	CO 3	L 4
4	Computer networks	CO 4	L 4
4	Load-Shedding Problem in Microgrid Operation	CO 4	L 3
5	Machine Scheduling Problem	CO 5	L 4
5	Able to classify computational problems into P, NP, NP-Hard and NP-complete	CO 5	L 3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to .	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$	$\left[\begin{array}{c} \mathrm{PO} \\ 2 \end{array}\right.$			$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 6 \\ \hline \end{array}$			$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{PO} \\ & 12 \end{aligned}$				$\begin{gathered} \text { Lev } \\ \mathrm{el} \\ \hline \end{gathered}$
1	18CS42.1	Analyze the computational complexity algorithms.	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	3	3		L4
2	18CS42.2	Apply and AnalyzeDivide and Conquer Strategy to solve problems	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	3	3		L4
3	18CS42.3	Apply and Analyze Optimization problems using Greedy strategy.		2.5	3	2.5	-	-	-	-	-	-	-	-	2	3		L4
4	18CS42.4	Apply and Analyze Optimization routes using Dynamic Programming strategy.	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	2	3		L4
5	18CS42.5	Classify computational problems into P, NP, NP-Hard and NPcomplete problems	2.5	2.5	3	2.5	-	-	-	-	-	-	-	5	2	3		L3
-	18CS42.	Average	2.5	2.5	3				-	-	-				2. 4	3		L3- L4
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Brute force techniques	Presentation by students	$3^{\text {rd }}$ week / date	Self	List from B4 above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Definition,specification,framework, Asymptotic notation, problem types	10	2	-	-	1	1	2	CO1	L4
2	Divide and Conquer,Decrease and conquer	10	2	-	-	1	1	2	CO 2	L4
3	Greedy method ,Transform and conquer approach	10	-	2	-	1	1	2	CO 3	L4
4	Dynamic Programming	10	-	2	-	1	1	2	CO 4	L4
5	Backtracking,Branch and Bound,Knapsack problem,NP- Complete and NP-Hard Problem	10	-	-	4	1	1	2	CO 5	L3
-	Total	50	4	4	4	5	5	10	CO1-CO5	L3-L4

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1, CO2	L4,L4
3, 4	CIA Exam - 2	30	$\mathrm{CO}_{3} \mathrm{CO} 4$	L4,L4
5	CIA Exam - 3	30	CO 5	L3
1,2	Assignment - 1	10	$\mathrm{CO} 1, \mathrm{CO} 2$	L4,L4
3, 4	Assignment-2	10	$\mathrm{CO}_{3} \mathrm{CO} 4$	L4,L4
5	Assignment - 3	10	CO 5	L3
1,2	Seminar-1		-	-
3, 4	Seminar - 2		-	-
5	Seminar-3		-	-
1,2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1-5	Other Activities - Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	\|ntroduction:	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyze the computational complexity of different algorithms.	CO 1	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	What is an Algorithm?Algorithm Specification,Analysis Framework	CO 1	L1
2	Performance Analysis: Space complexity, Time complexity	$\mathrm{CO1}$	L2
3	Asymptotic Notations:Big-Oh notation (0), Omega notation (Ω),		L3
4	Theta notation (Θ), and Little-oh notation (0),	$\mathrm{CO1}$	L3
5	Mathematical analysis of Non-Recursive Algorithms with Examples		L4
6	Mathematical analysis of Non-Recursive Algorithms with Examples contd..	CO 1	L4
7	Mathematical analysis of recursive Algorithms with Examples .	$\mathrm{CO1}$	L4
8	Mathematical analysis of recursive Algorithms with Examples contd..	CO1	L4
9	Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems.	CO1	L3
10	Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.	CO1	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Able to Analyze a given algorithm and express its time and space complexities	CO 1	L4
2	Able to apply data structures to combinatorial problems	CO 2	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define best case, worst case and average case efficiency. Give these efficiencies for sequential search.	CO 1	L4
2	Briefly explain important fundamental data structures used in algorithm design.	CO1	L3
3	Describe basic efficiency classes. (9 points)	CO 1	L4
4	Briefly explain the important problem types coming under design and analysis of algorithms.	CO1	L4
5	Explain three asymptotic notations with a neat diagram. Prove n2+5n+7= $\Theta(n 2)$	CO1	L4
e	Experiences	-	
1			
2			
3			
4			
5			

Module - 2

Title:	Divide and Conquer	Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Apply and Analyze Divide and Conquer Strategy to solve problems	CO 2	L4
\mathbf{b}	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Divide and Conquer: General method,	CO 2	L 4

12	Binary search,	CO 2	L4
13	Recurrence equation problems,	CO_{2}	L3
14	Recurrence equation problems contd...	CO_{2}	L3
15	Finding the maximum and minimum	CO 2	L4
16	Merge sort,	CO 2	L4
17	Quick sort,	CO 2	L4
18	Strassen's matrix multiplication	CO 2	L4
19	Advantages and Disadvantages of divide and conquer.	CO 2	L4
20	Topological Sort.	CO 2	L4
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	analyze by solving recurrence equation.	CO 2	L4
2	design algorithms using Divide and Conquer Strategy.	CO 2	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
6	Find the upper bound of recurrences given below by substitution method. i) $T(n)=2 T(n / 2)+n$ ii) $T(n)=T(n / 2)+1$	CO 2	L3
7	Briefly explain binary search algorithm along with efficiency analysis	CO 2	L4
8	Write the algorithm for Merge Sort.	CO 2	L4
9	Sort the following elements using merge sort. Write the recursion tree. $70,20,30,40,10,50,60$ Twisted : Use D \& C method which divides problem size by considering position	CO 2	L3
10	Explain quick sort with an algorithm.	CO 2	L4
11	Derive worst case,best case and average case for Merge sort.	CO 2	L4
12	Derive worst case,best case and average case for quick sort.	CO 2	L4
13	Sort the following elements using quick sort $25,10,72,18,40,11,64,58,32,9$	CO 2	L3
e	Experiences	-	-
1			
2			
3			
4			
5			

1. CIA EXAM - 1

a. Model Question Paper - 1

Course: Design and Analysis of Algorithms

-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks	CO	Level
1	a	Explain Algorithm Specification in detail.	6	CO 1	L4
	b	Explain wit h an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a particular problem instance.	6	CO1	L4
	C	Derive the Time complexity for Merge sort	3	CO 2	L4
		OR			
1	a	Explain the asymptotic notations with examples.	7	CO 1	L4
	b	Illustrate mathematical analysis of recursive algorithm for Tower of Hanoi puzzle.	6	CO 1	L4
	c	Apply Merge sort for the elements:90 30209070105040	3	CO2	L3
2	a	Compare the order of growth by using limits: $\mathrm{n}!$ and 2^{n}	2	CO 1	L4
	b	Write a recursive algorithm for binary search and also bring out its efficiency.	8	CO2	L3
		Derive the best case and worst case time efficiency of the Quick sort Algorithm.	5	CO 2	L4

		OR			
2	a	Explain the criteria that an algorithm must satisfy.	5	CO 1	L 4
	b	Explain the general method of divide and conquer and write an algorithm for the same.	5	CO 2	L 4
	cWrite a function to find the maximium and minimum elements in a given array of n elements by applying divide and conquer technique.	5	CO 2	$\mathrm{L4}$	

b. Assignment -1

Model Assignment Questions							
Course Code:	18 CS42	Sem:	IV	Marks:	10	Time:	75 minutes
Course:	Design and Analysis of Algorithms	Module: 1, 2					

SNo	Assignment Description	Marks	CO	Level
1	Describe basic efficiency classes. (9 points)	5	CO1	L4
2	Briefly explain the important problem types coming under design and analysis of algorithms.	6	CO1	L3
3	Consider Tower of Hanoi puzzle. Derive the recurrence relation for the total movement of disk. Solve the recurrence relation using substitution method	10	CO1	L4
4	Write the algorithm for Quick Sort. Derive the best case, worst case, average case time efficiency of the algorithm	10	CO 2	L4
5	What is an algorithm? Explain the notion of algorithm with an example.	10	CO1	L4
6	Compare the order of growth of $1 / 2 n(n-1)$ and n^{2}.	4	CO1	L4
7	Find the upper bound of recurrences given below by substituation method. a) $2 T(n / 2)+n$ b) $T(n / 2)+1$	4	CO 2	L3
8	write an algorithm for merge sort. Analyze its efficiency.	7	CO 2	L4
9	Apply quick sort on following list and draw recursive call tree : 5, 3, 1,9, 8, 2, 4,7	10	CO 2	L4
10	Write the algorithm for Quick sort. Derive the worst case time efficiency of the algorithm.	10	CO 2	L4
11	Compare the order of growth by using limits: n ! and 2^{n}	4	CO 1	L4
12	Write a function to find the maximium and minimum elements in a given array of n elements by applying divide and conquer technique.	5	CO 2	L4
13	Explain the general method of divide and conquer and write an algorithm for the same.	5	CO 2	L4

D2. TEACHING PLAN - 2

Module-3

Title:	Greedy Method	Appr Time:	12 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms

-	At the end of the topic the student should be able to	-	Level			
1	Apply and Analyze Optimization problems using Greedy strategy.	CO_{3}	L4			
b	Course Schedule					
Class No	Portion covered per hour	-	-			
21	General method, Coin Change Problem,	CO_{3}	L4			
22	Knapsack Problem,	CO_{3}	L4			
23	Knapsack Problem contd..	CO_{3}	L4			
24	Job sequencing with deadlines	CO_{3}	L4			
25	Minimum cost spanning trees:Prim's Algorithm,	CO_{3}	L4			
26	Kruskal's Algorithm	CO_{3}	L4			
27	Single source shortest paths:Dijkstra's Algorithm	CO_{3}	L4			
28	Single source shortest paths:Dijkstra's Algorithm contd...	CO_{3}	L4			
29	Optimal Tree problem:Huffman Trees and Codes	CO_{3}	L4			
30	Transform and Conquer Approach:Heaps and Heap Sort	CO_{3}	L4			
c	Application Areas	-	-			
-	Students should be able employ / apply the Module learnings to					
1	solve Optimization problems using Greedy strategy.	CO_{3}	L4			
2	constuct Optimal Tree usingTransform and Conquer Approach	CO_{3}	L4			
d	Review Questions	-	-			
-	The attainment of the module learning assessed through following questions					
14	Define Optimal solution and feasible solution.	CO_{3}	L4			
15	Define Coin Change Problem. State the greedy method to solve the coin change problem. For 49 rupees, find the denominations with least no. of coins. The available denominations in rupees are $\{1,2,5,10\}$	CO_{3}	L4			
16	What is the solution generated by the function job scheduling (JS) when $\mathrm{n}=5$, [p1,p2,p3,p4,p5]=[20,15,10,5,1] and [d1, d2,d3,d4, d5] $[2,2,1,3,3]$	CO 3	L4			
17	What is a knapsack problem?Obtain solution for the knapsack problem using greedy method for $n=3$, capacity $m=20$ values $25,24,15$ and weights $18,15,10$ respectively.	CO3	L4			
18	Write a Kruskal algorithm to find minimum cost spanning tree and obtain spanning tree of the graph shown below.	CO_{3}	L4			
19	Apply PRIMS algorithm for the following graph to find minimum spanning tree.	CO 3	L4			
20	that the time efficiency isO(\|€	log	€)	CO 3	L4
21	Apply Krushkal 's algorithm for the following graph to find minimum spanning tree.	CO 3	L4			
22	Apply PRIMS algorithm for the following graph to find minimum spanning tree	CO 3	L4			

Module - 4

Title:	Dynamic Programming Technique	Appr Time:	10 Hrs

COURSE PLAN - CAY 2019-20

a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply and Analyze Optimization routes using Dynamic Programming strategy.	CO 4	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Dynamic Programming: General method with Examples,	CO 4	L4
32	Multistage Graphs	CO 4	L4
33	Transitive Closure: Warshall's Algorithm,	CO_{4}	L4
34	All Pairs Shortest Paths:Floyd's Algorithm,	CO 4	L4
35	Bellman-Ford Algorithm	CO 4	L4
36	Bellman-Ford Algorithm contd...	CO 4	L4
37	Travelling Sales Person problem	CO 4	L4
38	Optimal Binary Search Trees,	CO_{4}	L3
39	Knapsack problem	CO 4	L3
40	Reliability design	CO 4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Apply and Analyze Optimization routes using Dynamic Programming strategy.	CO 4	L4
2	Solve Optimization problems	CO 4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
32	Briefly explain how dynamic programming works.	CO_{4}	L4
34	Find the shortest path from A to L , in the following multistage graph, using dynamic programming. Use forward approach to solve the prob lem.	CO 4	L4
36	Generate Transitive Closure for the given graph	CO 4	L4
37	ExplainWarshalls AlgorithmGenerate Transitive Closure for the given graph.Apply this algorithm to the given graph below.	CO 4	L4
38			
39			
40			
41			

COURSE PLAN - CAY 2019-20

\mathbf{e}	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Course Code:	18 CS42	Sem:	IV	Marks:	30	Time:	75 minutes

Course: Design and Analysis of Algorithms

-	-	Note: Answer all questions, each carry equal marks. Module : 3,4	Marks	CO	Level
1	a	Obtain the optimal solution for the job sequencing problem with deadline.where $\mathrm{n}=4$ profit (p1,p2,p3,p4)=(100,10,15,27) and deadlines. (d1, d2, d3,d4)=(2,1,2,1)	4	CO 3	L4
	b	Define MST. Apply PRIMS and KRUSKAL algorithm for the following graph to get MST. Show the intermediate steps.	11	CO 3	L4
2	a	Explain the concept of greedy techniques for prim's algorithm. Obtain minimum cost spanning tree for the graph below. $\left[\begin{array}{ccccc} 0 & 3 & \infty & 7 & \infty \\ 3 & 0 & 4 & 2 & \infty \\ \infty & 4 & 0 & 5 & 6 \\ 7 & 2 & 5 & 0 & 4 \\ \infty & \infty & 6 & 4 & 0 \end{array}\right]$	7	CO 3	L4
	b	Explain the concept of greedy techniques for prim's algorithm. Obtain minimum cost spanning tree for the graph below.	8	CO 3	L4
3	a	Find the shortest path from S to T inthe following multistage graph using dynamic programming. Use forward approach to solve the prob lem	8	CO 4	L4
	b	Generate Transitive Closure for the given graph	7	CO 4	L4

4	a	ExplainWarshalls Algorithm Generate Transitive Closure for the given graph.Apply this algorithm to the given graph below.	8	CO 4	L4
	b	Write Warshall's-Floyd Algorithm	7	CO 4	L4

b. Assignment - 2

Model Assignment Questions								
Course Code:	18 CS42	Sem:	IV	Marks:	10	Time:	75 minutes	
Course:	Design and Analysis of Algorithms	Module: 3, 4						

SNo	Assignment Description	Marks	CO	Level
1	Define coin change problem. Write the greedy strategy for getting the optimal solution. If coins available are of values $\{2,5,3,6\}$, find the least denominations for a) 55 b)77	10	CO 3	L4
2	What is job sequencing with deadlines?find solution generated by job sequencing with deadlines for 7 jobs , given profits $3,5,2018,1,6,30$ and deadlines 1,3,4,3,2,1,2 respectively.	6	CO 3	L4
3	What is minimum cost spanning tree?Apply prim's and kruskal's algorithm for the given graph below.	10	CO 3	L4
4	Define minimum cost spanning tree.Give high level description of Prim's algorithm to find minimum spanning tree and find minimum spanning tree for graph shown below.	8	CO 3	L4

D3. TEACHING PLAN - 3

Module - 5

Title:	Backtracking	Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Classify computational problems into P, NP, NP-Hard and NP-complete problems	CO5	L3

	Experiences		
\mathbf{e}	CO10	L 2	
1		CO 9	
2		CO	
3		L 3	
4			
5		CO	

E3. CIA EXAM - 3

a. Model Question Paper - 3

	bExplain the following with examples a. Class P Problems b. Class NP Problems c. NP complete problem d.NP hard problem.	5	CO 5	L 3	

b. Assignment - 3

Model Assignment Questions								
Course Code:	18 CS42	Sem:	IV	Marks:	5	Time:	75 minutes	
Course:	Design and Analysis of Algorithms	Module:5						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

F. EXAM PREPARATION

1. University Model Question Paper

	b	Generate transitive closoure for given graph.	10	CO 4	L4
		OR			
3	a	explain warsnall algorinhm to ind the transitive closure of a directed graph. Apply this algorithm to the graph given below. (08 Marks)	12	CO 4	L4
	b	Write	8	CO 4	L4
5	a	Give tens problem. Explain the solution for 4-queens problem using state space tree.	10	CO 5	L3
	b	Apply backtracking to solve the following instance of the subset-sum problem : $\mathrm{S}=[1,3,4,5$] and $\mathrm{d}=11$. Draw the state space tree.	10	CO 5	L3
		OR			
5	a	Apply backtracking based graph coloring algorithm for the graph given below with $\mathrm{m}=4$. Give state space tree showing first 3 valid assignments.	10	CO 5	L3
	b	Give the backtracking based algorithm to the problem of finding Hamiltonian cycle in the graph	10	CO 5	L3

2. SEE Important Questions

Cours		Design and Analysis of Algorithms					$\begin{aligned} & \text { Month / Year } \\ & \hline \text { Time: } \end{aligned}$		May /2020	
Crs Cod	ode:	18CS42	Sem:	4	Marks:	100			180 m	inutes
	Note	Answer	E full q	ns.	ns carry	al marks.		-	-	
Mod ule	Qno.	Importan	stion					Marks	CO	Year
1	a	Explain algorithm	mathe		ed for th	alysis of an		06	CO1	2016
	b	Explain function of growt i) $\log n$ a ii) (log2 n	ethod g limits ollowing rt(n) log2	par pare tion re	der of the	wth of two		06	CO1	2015
	C	Explain in	f the bas	ymp	iency clas			10	CO1	2017
2	a	Solve th and $x(n)=$	wing r)+n for	$\begin{aligned} & \text { nce } \\ & (2)=1, r \end{aligned}$	$x(n)=3 x(r$	$\text { or } n>1, x \text { 1)=4 }$		06	CO 2	2015
	b	Explain	nalyze	merge	rithm.			10	CO 2	2016
	c	How qui	t can b	rove				04	CO 2	2015

COURSE PLAN - CAY 2019-20

3	a	Explain Kruskal's Algorithm With an example	10	CO_{3}	2016
	b	Construct a Huffman code for the following data: Character: ABCD - Probability: 0.40 .10 .20 .150 .15	10	CO3	2015
4	a	Write Warshall's algorithm and apply it to compute transitive closure for the directed graph with the adjacency matrix shown below: ABCD A 100 B0001 C0000 D 1010	10	CO 4	2014
	b	Explain the dynamic programming with Floyd's algorithm in detail. Apply Floyd's all pairs shortest problem. For the digraph given below	10	CO 4	2013
	c	What is the Optimal Binary Search Tree problem? Explain how principal of optimality holds for this problem. Also explain how it is solved using dynamic programming.	8	CO 4	2012
	d	What is the difference between Greedy approach and Dynamic Programming? Explain with example	5	CO 4	2013
5	a	Write an algorithm for sum of subset problem using backtracking. Also solve the following instance of sum of subset problem : $S=[1,5,2,7]$ with $d=$ 8.	10	CO 5	2016
	b	Apply Branch and Bound algorithm to solve the travelling salesman problem for the graph with a cost adjacency matrix is as follows. ABCDE A 03158 B30679 C 16042 D 57403 E89230	10	CO 5	2014
	d	Show that Hamilton cycle problem is NP-Complete.	5	CO_{5}	2014
	d	Explain the terms P, NP, NP-Hard and NP-Complete with suitable example. Also give relationship between them.	6	CO 5	2014

Course Outcome Computation

Academic Year:

Odd / Even semester

Attainment
LV Threshold : 3:>60\%, 2:>=50\% and <=60\%, 1: <=49\%
CO1 Computation : $(2+2+2+3) / 4=10 / 4=2.5$

PO Computation

Program Outcome	PO1	PO 3			PO 3		PO1		PO12		PO12	
Weight of	3		1		3		2		2		3	
$\mathrm{CO} \text { - PO }$ Course Outcome	CO 1		CO 2		CO_{3}		CO_{4}					
Test/Quiz/Lab QUESTION NO	T1						T2					
	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-
USN-1	5	2	10	3			10	3	9	3	4	1
USN-2	5	2	8	3								
USN-3	7	3	7	3	10	3	8	3	8	3	5	2
USN-4					4	1	10	3	8	3	6	2
USN-5	8	3	6	2	9	3	10	3	8	3		
USN-6							10	3	9	3	4	1
Average CO Attainment		2.5		2.75		2.33		3		3		1.5

