Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Information Science & Engineering
Semester :	4
Course Code:	18CS42
Course Title:	Design and Analysis of Algorthim
Credit / L-T-P:	4 / 3-2-0
Total Contact Hours:	50
Course Plan Author:	Sandhya B R

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
<u>1. Course Overview</u>	2
2. Course Content	3
<u>3. Course Material</u>	3
<u>4. Course Prerequisites</u>	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS.	4
<u>1. Course Outcomes</u>	4
<u>2. Course Applications</u>	4
3. Articulation Matrix	4
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT.	5
<u>1. Course Coverage</u>	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	<u>6</u>
E1. CIA EXAM – 1	7
a. Model Question Paper - 1	7
b. Assignment -1	7
D2. TEACHING PLAN - 2.	7
Module – 3	7
Module – 4	<u>8</u>
E2. CIA EXAM – 2.	9
a. Model Question Paper - 2	9
b. Assignment – 2	10
D3. TEACHING PLAN - 3	
Module – 5.	
E3. CIA EXAM – 3.	
a. Model Question Paper - 3	
b. Assignment – 3	11
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	IS
Semester:	4	Academic Year:	2019-2020
Course Title:	DESIGN AND ANALYSIS OF ALGORITHMS	Course Code:	18CS42
Credit / L-T-P:	4 / 3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Sandhya B R	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 75 %	SEE Target:	60 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule			Levels
1	Introduction: What is an Algorithm?(T2:1.1),Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω),Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4).Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4)	10	L4 Analyze
2	Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3)	10	L4 Analyze
3	Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4). Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4)	10	L4 Analyze
4	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).	10	L4 Analyze
5	Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Branch and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2), FIFO Branch and Bound solution (T2:8.2). NP-Complete and NP Hard problems: Basic concepts, non deterministic algorithms, P, NP, NP- Complete, and NP-Hard classes (T2:11.1).	10	L3 Apply
-	Total	50	L3-L4

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd	1,2,4,5,6,	In Lib / In Dept
5	Edition, 2009. Pearson.	9,8,12	
1,2,3,4,	Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran,	1,3,4,5,7,8	In Lib/ In dept
5	2nd Edition, 2014, Universities Press	,11	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2,3	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson,	1,2,3,4,5,	In Lib
	Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI	6,7	
4,5	Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education)	?	Not Available
С	Concept Videos or Simulation for Understanding	-	-
C1	Asymptotic Notations		
	https://www.youtube.com/watch?v=OpebHLAf99Y-10.40 secs		
C2	Data Structures		
	https://www.youtube.com/watch?v=FNZ509S9prU-5 Mins		
C3	Recurrence stratergy		
	https://www.youtube.com/watch?v=XNAfl2swlnY11.40 Secs		
C4	Divide and Conquer technique		
	https://www.youtube.com/watch?v=6SUmp_Cn-SU – 9 Mins		
C5	Greedy technique		
	nttps://www.youtube.com/watch?v=ARvQcqJNY -10 Mins		
60	Iransform and conquer approach		
C7	<u>IIIIps.//www.youtube.com/watch?v=iyzQCGUSVXk</u> -11 Mins		
	bytamic Programming technique		
68	Reanch Bound Tochniquos		
	https://www.voutube.com/watch?v=2RBNPc0_06g_10_Mins		
Co	No-hard and No-Complete problems		
C9	https://www.voutube.com/watch?v=qq4K5hhilSE= 5 Mins		
C10	Back tracking-N Queens problem		
	https://www.voutube.com/watch?v=3GghzSnt2Gc -7 Mins		
D	Software Tools for Design	-	-
	Eclipse Juno		
E	Recent Developments for Research	-	-
	Formalization of Asymptotic Notations in HOL4		
	https://jeeexplore.jeee.org/abstract/document/8821642		
F	Others (Web. Video, Simulation, Notes etc.)	_	-
1	Notel videos for Asymptototic Notations		
-	https://www.youtube.com/watch?v=EL9T1naiCaA		
2	Nptel videos for Minimum Spanning trees		
	https://www.youtube.com/watch?v=k9jemw3SZe0		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Desc	cription	Sem	Remarks	Blooms
utes	Code						Level
1	17pcd13/	C Programing	 Knowledge on Dat 	ta Structures	2		L4
	23		-				
2	17cs33	Data Structure	Knowledge of Da	ata Structures	3		L4
		and Application	Algorithm				
3	17cs33	Data Structure	Knowledge of Da	ata Structures	3		L4
		and Application	Algorithm				
4	17cs36	Discrete	Knowledge of Graph	ns and Trees are	3		L4
		Mathematics	required.				
		Structures	·				
5	17cs33	Data Structure	Knowledge of Da	ata Structures	3		L3
		and Application	Algorithm				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Brute Force Technique	Higher	Gap	Understa
	·	Study	A seminar on Brute Force	nd L2
			Technique	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	18CS42.1	Analyze the computational	10	Black board	Test/	L4
		complexity of different algorithms.		/system	assignme	
					nts	
2	18CS42.2	Apply and Analyze Divide and	10	Black board	Test/	L4
		Conquer Strategy to solve		/system	assignme	
		problems			nts	
				DI I I		
3	18CS42.3	Apply and Analyze Optimization	10	Black board	lest/	L4
		problems using Greedy strategy.		/system	assignme	
					nts	
4	18CS42.4	Apply and Analyze Optimization	10	Black board	Test/	L4
		routes using Dynamic		/system	assignme	
		Programming strategy.			nts	
	4900 49 -		10	Disalchagur	Taat (
5	180542.5	classify computational problems	10	Black board	iest/	∟3
		into P, NP, NP-Hard and NP-		/system	assignme	

		complete problems			nts	
-	-	Total	50	Black board /system	Test/ assignme nts	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Able to Analyze a given algorithm and express its time and space complexity	CO1	L4
1	Facebook to Build database,	CO1	L3
2	Able to Solve recurrence equations	CO2	L3
2	efficient use of memory cache	CO2	L4
3	In the field of artificial intelligence, automatic speech recognition.	CO3	L4
3	In the implementation of Priority queue in graph algorithms	CO3	L4
4	Computer networks	CO4	L4
4	Load-Shedding Problem in Microgrid Operation	CO4	L3
5	Machine Scheduling Problem	CO5	L4
5	Able to classify computational problems into P, NP, NP-Hard and NP-complete	CO5	L3

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		ý <u>''</u>								~	<i>.</i>							
-	-	Course Outcomes Program Outcomes					-											
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	18CS42.1	Analyze the computational	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	3	3		L4
		algorithms.																
2	18CS42.2	Apply and Analyze Divide and	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	3	3		L4
		problems	ò															
3	18CS42.3	Apply and Analyze Optimization	2.5	2.5	3	2.5	-	-	-	-	-	-	-	-	2	3		L4
		problems using Greedy strategy.																
4	18CS42.4	Apply and Analyze Optimization	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	2	3		L4
		routes using Dynamic Programming strategy.																
5	18CS42.5	Classify computational problems	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	2	3		L3
		into P, NP, NP-Hard and NP-	-															
-	18CS42.	Average	2.5	2.5	3	2.5	-	-	-	-	-	-	-	2.5	2.	3		L3-
															4			L4
-	PO, PSO	D 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions					ons;											
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and					and											
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and leamwork				Orr;												
		10.Communication; 11.Project Management and Finance; 12.Life-long Learnin; S1 Software Engineering: S2 Data Base Management: S2 Web Design				iirig;												
1 1			10.56	- 11/10		n lell		1	5. VV I	-U/	1HS	1111						

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	pic Actions Planned Schedule Planned		Resources Person	PO Mapping
ules					
1	Brute force techniques	Presentation by students	3 rd week / date	Self	List from B4 above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.		No. o	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Definition,specification,framework,	10	2	-	-	1	1	2	CO1	L4
	Asymptotic notation,problem types									
2	Divide and Conquer,Decrease and	10	2	-	-	1	1	2	CO2	L4
	conquer									
3	Greedy method ,Transform and	10	-	2	-	1	1	2	CO3	L4
	conquer approach									
4	Dynamic Programming	10	-	2	-	1	1	2	CO4	L4
5	Backtracking,Branch and	10	-	-	4	1	1	2	CO5	L3
	Bound,Knapsack problem,NP-									
	Complete and NP-Hard Problem									
-	Total	50	4	4	4	5	5	10	CO1-CO5	L3-L4

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2	L4,L4
3, 4	CIA Exam – 2	30	CO3, CO4	L4,L4
5	CIA Exam – 3	30	CO5	L3
1, 2	Assignment - 1	10	CO1, CO2	L4,L4
3, 4	Assignment - 2	10	CO3, CO4	L4,L4
5	Assignment - 3	10	CO5	L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Title:	Introduction:	Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyze the computational complexity of different algorithms.	CO1	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	What is an Algorithm?Algorithm Specification ,Analysis Framework	CO1	L1
2	Performance Analysis: Space complexity, Time complexity	CO1	L2
3	Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω),		L3
4	Theta notation (Θ), and Little-oh notation (o),	CO1	L3
5	Mathematical analysis of Non-Recursive Algorithms with Examples .		L4
6	Mathematical analysis of Non-Recursive Algorithms with Examples contd	CO1	L4
7	Mathematical analysis of recursive Algorithms with Examples .	CO1	L4
8	Mathematical analysis of recursive Algorithms with Examples contd	CO1	L4
9	Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems.	CO1	L3
10	Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.	CO1	L3
C	Application Areas	-	-
-	Students should be able employ 7 apply the Module learnings to	-	-
1	Able to Analyze a given algorithm and express its time and space complexities	C01	L4
2	Able to apply data structures to combinatorial problems	CO2	L3
	Deview Ouestiens		
a	Review Questions	-	-
-	Define heat asso weret asso and average asso effectionary Cive these	-	-
	efficiencies for sequential search.	COI	L4
2	Briefly explain important fundamental data structures used in algorithm design.	CO1	L3
3	Describe basic efficiency classes. (9 points)	CO1	L4
4	Briefly explain the important problem types coming under design and analysis of algorithms.	CO1	L4
5	Explain three asymptotic notations with a neat diagram. Prove n2+ 5n + 7 = $\Theta(n_2)$	CO1	L4
е	Experiences	-	-
1			
2			
3			
4			
5			

Divide and Conguer	Appr	10 Hrs
	Time:	
Course Outcomes	СО	Blooms
At the end of the topic the student should be able to \ldots	-	Level
Apply and Analyze Divide and Conquer Strategy to solve problems	CO2	L4
Course Schedule	-	-
Portion covered per hour	-	-
Divide and Conquer: General method,	CO2	L4
	Divide and Conquer Course Outcomes At the end of the topic the student should be able to Apply and Analyze Divide and Conquer Strategy to solve problems Course Schedule Portion covered per hour Divide and Conquer: General method,	Divide and Conquer Appr Time: Course Outcomes CO At the end of the topic the student should be able to - Apply and Analyze Divide and Conquer Strategy to solve problems CO2 Course Schedule - Portion covered per hour - Divide and Conquer: General method, CO2

Т

_

		1	
12	Binary search,	CO2	L4
13	Recurrence equation problems,	CO2	L3
14	Recurrence equation problems contd	CO2	L3
15	Finding the maximum and minimum	CO2	L4
16	Merge sort,	CO2	L4
17	Quick sort ,	CO2	L4
18	Strassen's matrix multiplication	CO2	L4
19	Advantages and Disadvantages of divide and conquer.	CO2	L4
20	Topological Sort.	CO2	L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	analyze by solving recurrence equation.	CO2	L4
2	design algorithms using Divide and Conquer Strategy.	CO2	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
6	Find the upper bound of recurrences given below by substitution method. i) $T(n) = 2T(n/2)+n$ ii) $T(n) = T(n/2) + 1$	CO2	L3
7	Briefly explain binary search algorithm along with efficiency analysis	CO2	14
8	Write the algorithm for Merge Sort	CO2	
0	Sort the following elements using merge sort. Write the recursion tree	CO2	L4 12
9	70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position		L3
10	Explain quick sort with an algorithm.	CO2	L4
11	Derive worst case, best case and average case for Merge sort.	CO2	L4
12	Derive worst case,best case and average case for quick sort.	CO2	L4
13	Sort the following elements using quick sort	CO2	L3
	25,10,72,18,40,11,64,58,32,9		
е	Experiences	-	-
1			
2			
3			
4			
5			

1. CIA EXAM – 1

a. Model Question Paper - 1

Crs	Code:	18CS42	Sem:	IV	Marks:	30	Time:	7	5 minute:	S	
Cou	irse:	Design and	Analysis	of Algorith	ms	·					
-	-	Note: Answ	/er all qu	estions, ea	ch carry equal	marks.	Module : 1, 2	2	Marks	СО	Level
1	а	Explain Algo	rithm Spe	cification in c	detail.				6	CO1	L4
	b	Explain wit h	an examp	ole how a nev	w variable count	introduc	ed in a progra	m can	6	CO1	L4
		be used to fi	nd the nur	nber of step	s needed by a p	rogram to	o solve a partio	cular			
	problem instance.										
	С	c Derive the Time complexity for Merge sort						3	CO2	L4	
					OR						
1	а	Explain the a	asymptotic	notations w	ith examples.				7	CO1	L4
	b	Illustrate ma	thematica	l analysis of	recursive algorit	hm for To	ower of Hanoi	puzzle.	6	CO1	L4
	С	Apply Merge	e sort for th	ne elements:	90 30 20 90 70 1	0 50 40			3	CO2	L3
2	a	Compare the	e order of g	growth by us	sing limits: n! and	2 ⁿ			2	CO1	L4
	b	Write a recu	Irsive algo	rithm for bina	ary search and a	lso bring	out its efficien	су.	8	CO2	L3
	С	Derive the b	est case a	nd worst cas	e time efficiency	of the Q	uick sort Algo	rithm.	5	CO2	L4

		OR			
2	a	Explain the criteria that an algorithm must satisfy.	5	CO1	L4
	b	Explain the general method of divide and conquer and write an algorithm for the	5	CO2	L4
		same.			
	С	Write a function to find the maximium and minimum elements in a given array of	5	CO2	L4
		n elements by applying divide and conquer technique.			

b. Assignment -1

			Moc	lel Assignme	ent Question	S			
Course Code:	18CS42	Sem:	IV	Marks:	10	Time: 7	75 minute	es	
Course:	Design a	nd Analys	is of Algorith	ims	Module :	1, 2			
						·			
S	No		As	signment De	escription		Marks	СО	Level
	1	Describe	basic efficier	ncy classes.	(9 points)		5	CO1	L4
	2	Briefly exp design an	olain the imp Id analysis of	oortant prob f algorithms.	lem types co	oming under	6	CO1	L3
	3	Consider for the to using sub	Tower of Hai tal moveme stitution me	noi puzzle. D nt of disk. S thod	Derive the rec Solve the rec	currence relation currence relation	n 10 n	CO1	L4
	4	Write the case, ave	algorithm fo	or Quick Sor ne efficiency	t. Derive the / of the algor	best case, wors ithm	t 10	CO2	L4
	5	What is ai example.	n algorithm?	? Explain the	notion of al	gorithm with an	10	CO1	L4
6 Compare the order of growth of $\frac{1}{2}$ n(n-1) and n ² .) ² .	4	CO1	L4	
	7	Find the upper bound of recurrences given below by substituation method. a)2T(n/2)+n b)T(n/2)+1						CO2	L3
	8	write an a	lgorithm for	7	CO2	L4			
	9	Apply quick sort on following list and draw recursive call tree : 5, 3, 1,9, 8,2, 4,7						CO2	L4
1	.0	Write the algorithm for Quick sort. Derive the worst case time efficiency of the algorithm.						CO2	L4
1	11	Compare	e the order	of growth b	by using lim	its: n! and 2 ⁿ	4	CO1	L4
1	12 Write a function to find the maximium and minimum elements in a given array of n elements by applying divide and conquer technique.							CO2	L4
1	3	Explain t write an	he general algorithm fo	method of or the same	divide and e.	conquer and	5	CO2	L4

D2. TEACHING PLAN - 2

Module - 3

Title:	Greedy Method	Appr Time:	12 Hrs
a	Course Outcomes	CO	Blooms

	At the end of the tonic the student should be able to		
-	Apply and Applyze Optimization problems using Cready strategy	-	Level
1	Apply and Analyze Oplimization problems using Greedy strategy.	CO3	L4
la	Courses Cabadula		
	Course Schedule		1
Class NO	Portion covered per hour	-	-
21	General method, Com Change Problem,	CO_3	
22	Knapsack Problem,	CO3	L4
23	Knapsack Problem contd	CO3	L4
24	Job sequencing with deadlines	CO3	L4
25	Minimum cost spanning trees:Prim's Algorithm,	CO3	L4
26	Kruskal's Algorithm	CO3	L4
27	Single source shortest paths:Diikstra's Algorithm	CO3	L4
28	Single source shortest paths:Diikstra's Algorithm contd	CO3	L4
29	Optimal Tree problem:Huffman Trees and Codes	CO3	L4
30	Transform and Conquer Approach:Heaps and Heap Sort	CO3	L4
0.			
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	_
1	solve Optimization problems using Greedy strategy	CO3	١٨
2	constuct Optimal Tree using Transform and Conquer Approach	<u> </u>	
<u> </u>			<u> </u>
Ь	Review Questions		_
-	The attainment of the module learning assessed through following questions		_
1/	Define Ontimal solution and feasible solution	CO_2	14
15	Define Coin Change Problem State the greedy method to solve the coin	CO_3	
LD CT	change problem. For 10 runness find the denominations with least no of coins	003	L4
	The available denominations in rupees are $\{1, 2, 5, 10\}$		
16	What is the solution generated by the function job scheduling (IS) when $n=5$	CO2	14
10	[n] n2 n3 n4 n5]=[20 15 10 5 1] and [d1 d2 d3 d4 d5]=[2 2 1 3 3]	003	L4
17	What is a knapsack problem?Obtain solution for the knapsack problem using	CO_{2}	14
1/	greedy method for n=3 capacity m=20 values 25.2/15 and weights 18.15.10	003	L4
	respectively.		
18	Write a Kruskal algorithm to find minimum cost spanning tree and obtain	CO3	14
	spanning tree of the graph shown below.	000	
	& Q		
	5/ 10 6		
	6 0 2		
19	Apply PRIMS algorithm for the following graph to find minimum spanning tree.	CO3	L4
	& Q		
	5/ 6		
	3 4		
	6 a 2 C		<u> </u>
20	Write Krushkal's algorium to construct minimum spanning tree and show	CO3	L4
	that the time efficiency isO(€ log €)		
21	Apply Krushkal 's algorithm for the following graph to find minimum spanning	CO3	L4
	tree.		
	3 4 4 6		
	a 5 5 5		
	6 2 8		
	E		
22	Apply PRIMS algorithm for the following graph to find minimum spanning troo	CO_{2}	I A
22		3	L4
18CS42	8 10 10 13 Copyright ©2017 cAAS All righ	ts reserv	ved.
	14 11		
	6 8 8		
	T.		

23	Apply PRIMS	CO3	L4					
	31 556 77 34							
24	Write the Dii		thm for sing	le source sh	ortest path		CO3	4
25	Write the Dij	kstra's algori	thm for sing	le source sh	ortest path.	Apply Dijkstra's	CO3	 L4
	algorithm							
26	In the weigh	ted digrapg	given below.	Determine t	he shortest p	aths from vertex	CO3	L4
	The all other vertices. 37 70 70 17 37 37 37 37 37 6 37 37 6 37 37 6 37 37 6 37 37 6 37 37 6 37 37 6 37 37 37 37 37 37 37 37							
27	Apply Dijkst	ra's algorithr	n to find the	shortest pat	h,considering	g source vertex	CO3	L4
	as 1.	3 1	2	4 3 4 4 4	6			
28	Construct th	e Huff man c	ode for the	following da	ta.		CO3	L4
	Symbol	A	В	C	D	-		
	frequenc y	0.35	0.1	0.2	0.2	0.15		
	Also ilongod		1011011101					
20	Construct a	heap for the	list 1 8 6 6	3. 7. 1 hv the	bottom-up;	algorithm	C.O.3	Lи
30	Sort the arra	y 2, 9, 7, 6, 5,	8 by heapso	ort.			CO3	_
		,	,					· ·
е	Experiences	5					-	-
1								
2								
3								
<u>4</u> Б								
L 0								

Title:	Dynamic Programming Technique	Appr	10Hrs
		l ime:	
18CS42	Copyright ©2017. cAAS. All	rights reserv	/ed.
	Page # 12 / 24		

2	Course Outcomes	<u> </u>	Plaams
a	At the and of the tenic the student should be able to	0	Loval
-	At the end of the topic the student should be able to	-	Level
I	Apply and Analyze Oplimization roules using Dynamic Programming strategy.	CO4	L4
h	Course Sabadula		
	Course Schedule		
	Portion covered per nour	-	-
31	Multistage, Graphs	CO4	
32		004	L4
33	Iransitive Closure: Warshall's Algorithm,	CO4	L4
34	All Pairs Shortest Paths:Floyd's Algorithm,	CO4	L4
35	Bellman-Ford Algorithm	004	L4
36	Bellman-Ford Algorithm contd	CO4	L4
37	Iravelling Sales Person problem	CO4	L4
38	Optimal Binary Search Trees,	CO4	L3
39	Knapsack problem	CO4	L3
40	Reliability design	CO4	L3
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Apply and Analyze Optimization routes using Dynamic Programming strategy.	004	L4
2	Solve Oplimization problems	CO4	L3
	Deview Overstiens		
α	Review Questions	-	-
-	I ne attainment of the module learning assessed through following questions	-	-
32	Briefly explain now dynamic programming works.	CO4	L4
34	Find the shortest path from A to L, in the following multistage graph, using	CO4	L4
	aynamic programming. Use forward approach to solve the probilem.		
	V4 V2 V3 V4 V5		
	7 8 10 F 12 1		
	9 6 H ~ K 11		
36	Generate Transitive Closure for the given graph	CO4	L4
	$() \longrightarrow (2)$		
	4 1		
	(4) <u>((3)</u>		
27	ExplainWarshalls AlgorithmGenerate Transitive Closure for the given	COA	
57	graph Apply this algorithm to the given graph below	004	L4
	Qt 2. p		
	3 6 7		
	the internet of the second sec		
38			
39			
40			
41			

е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper – 2

Cour	'se	18CS42	Sem:	IV	Marks:	30	Time:	75 minute	S	
Cour		Design and	Analysis of	Algorithms						
-	-	Note: Answ	/er all quest	ions. each o	carrv equal	marks. Modu	ule : 3. 4	Marks	со	Level
1	а	Obtain the deadline.wl (d1,d2,d3,d2	e optimal s nere n=4 4)=(2,1,2,1)	solution for profit (p1,p2	the job s 2,p3,p4)=(100	sequencing 0,10,15,27) a	problem w Ind deadlin	rith 4 es.	CO3	L4
	b	Define MST to get MST.	Apply PRIN Show the ir	1S and KRU ntermediate	SKAL algorit steps.	hm for the fo	ollowing gra	ph 11	CO3	L4
2	a	Explain the minimum c	ain 7	CO3	L4					
	b	Explain the minimum c	e concept o ost spanning	f greedy te g tree for the 70 80	chniques fo e graph belo 20 40 30	r prim's alç w.	gorithm. Obt	ain 8	CO3	L4
3	a	Find the shortest path from S to T inthe following multistage graph using dynamic programming. Use forward approach to solve the prob lem								L4
	b	Generate Tr	ransitive Clo	sure for the	given graph	1		7	CO4	L4

4	а	ExplainWarshalls Algorithm Generate Transitive Closure for the given graph.Apply this algorithm to the given graph below.	8	CO4	L4
	b	Write Warshall's-Floyd Algorithm	7	CO4	L4

b. Assignment – 2

	Model Assignment Questions										
Course Code:	18CS42	Sem:	IV	Marks:	10	Time:	75 minute	es			
Course:	Design a	Ind Analysis	of Algori	thms	Modul	e : 3, 4					
SI	٩o		As	signment De	scription		Marks	СО	Level		
:	L	Define coin getting the { 2, 5, 3, 6 },	10	CO3	L4						
	2	What is job generated l profits 3,5,2	sequenci by job sec 018,1,6,30	n 6	CO3	L4					
3		What is n kruskal's al(nd 10	CO3	L4						
	4	Define mini of Prim's al minimum sj	mum cos .gorithm f banning ti	t spanning tree to find minim ree for graph s	e.Give hig um span shown be	h level descript ning tree and f low.	ion 8 ind	CO3	L4		

5	Solve the problem.Ass	path	9	CO3	L4					
6	Construct th	e Huff	man code f	or the fo	llowing da	ita.		10	CO3	L3
	Symbol	A	В	С	D		-			
	frequenc Y	04	0.1	0.2	0.15		0.15			
	Also i)encod	e ABA	CABAD ii)10	00101110	01010				001	
7	Sort the follo	owing l on of h	ists by heap eaps. 5, 2, 2	sort by t 1, 1, 3 (in i	ncreasing	array order)		8	CO3	L3
8	Find the sho graph, using solve the pro	rtest pa dynan oblem va	ath from A t nic progran	o L , in th nming. U 73	ne followir Ise forward V4	ng mult d appro v5	istage bach to	10	CO4	L4
9	Exp digi			F 12 9 5 7 10 10 8	1 3 8 11 K		the ·ks)	6	CO4	L4

D3. TEACHING PLAN - 3

Title:	Backtracking	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Classify computational problems into P, NP, NP-Hard and NP-complete	CO5	L3
	problems		

b	Course Schedule	-						
Class No	Portion covered per hour	-	-					
41	Backtracking: General method , N-Queens problem.	CO5	L3					
42	Sum of subsets problem , Graph coloring Hamiltonian cycles.	CO5	L3					
43	Branch and Bound: Assignment Problem,	CO5	L3					
44	Travelling Sales Person problem	CO5	L3					
45	0/1 Knapsack problem LC Branch and Bound solution	CO5	L3					
46	FIFO Branch and Bound solution	CO5	 L3					
	NP-Complete and NP-Hard problems Basic concepts	CO5	3					
47	non-deterministic algorithms. P. NP.	CO5	<u> </u>					
49	non-deterministic algorithms, P. NP contd	CO5	 L3					
50	NP-Complete, and NP-Hard classes	CO5	 L3					
C	Application Areas	-	-					
-	Students should be able employ / apply the Module learnings to	-	_					
1	Able to design efficient algorithms using Back Tracking and Branch Bound	CO5	L3					
2	Able to classify computational problems into P_NP_NP-Hard and NP-complete	COF	13					
		005	L3					
d	Review Questions	-	-					
-	The attainment of the module learning assessed through following questions	-	-					
34	What is backtracking. Give the general Procedure.	CO5	L2					
35	Apply backtracking to solve the 3-cloring problem for the graph given below.	CO5	L4					
	Amply the healthealtheat to the problem of furting lightarian evels in the	<u> </u>						
	following graphs		_,					
37	What branch and bound method. How it is different from backtracking.	CO5	L3					
38	Apply the branch – and -bound algorithm to solve the travelling sales man problem for the following graph. Start city is a. Give the states pace tree	CO5	L3					
39	Apply FIFO Branch and Bound method for the following instance of 0/1 Knapsack problem to get the optimal solution. Knapsack Capacity W = 15	CO5	L3					
	$\boxed{\text{Item No}} 1 2 3 4$							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	weight 2 4 6 9							
	Value 10 10 12 18							

е	Experiences	-	-
1		CO10	L2
2		CO9	
3			
4		CO9	L3
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	e: 18CS42 Sem: IV Marks: 30 Time:								75 minutes			
Cour	se:	Design and	d Analysis of Alg	porithms	5								
-	-	Note: Answ	wer all questior	is, each	carry e	equal m	arks. M	1odule :	5	Marks	со	Level	
1	а	Give the p for 4-quee	roblem stateme ns problem usir	ent of r ng state	n-queer space l	ns probl tree.	.em. E	xplain tl	he solut	on 6	CO5	L2	
	b	Apply back	ktracking to solv	e the fc	ollowing w the st	g instand tate spa	ce of th	ne subse	et-sum	9	CO5	L4	
		0.0.000		11.0.10	OR						CO5	L4	
1	a	Apply backtracking based graph coloring algorithm for the graph given below with m=4. Give state space tree showing first 3 valid assignments.									CO5	L4	
	b	Give the Hamiltonia	ng 5	CO5	L4								
			- · · · · · · · · · · · · · · · · · · ·	·							CO5		
2	a	Apply bran problem to	Job 1	lob 2 4 8 6	ion. Give lob 3 7 3 1 9	Job 4 8 7 8 4	Person Person Person	e state s	pace tre	e	005	L3	
	b Apply the branch -and- bound algorithm to solve the travelling sales man problem for the following graph. Consider start city is A. Give the state space tree.									an 6 ate	CO5	L3	
2	а	With the	help of a state	e space	tree,	solve t	ne foll	owina i	nstance	of 10	CO5	L4	
	3	Knapsack Capacity W	problem by V = 15	the bra	anch a	nd bou	nd alg	gorithm.	Knapsa	ack			
			Item No.	1	2	3	4	5	6				
18CS4	12		Weight	5	7	2	4	5	1	AS. All rights	s reserve	d.	
			Value	40	35	18	4	10	2				

b	Explain the following with examples a. Class P Problems b. Class NP Problems c. NP complete problem d NP bard problem	5	CO5	L3

b. Assignment – 3

			Model	Ass	signmer	nt Ques	stions					
Course	18CS42	Sem:	IV	Ma	arks:	5		Time:	75 minute	es		
Code:	Decisional		of Alexavitlere			Maa						
Noto: Each	Design ar	analysis	or Algorithm	IS to E	Each ac		iule . 5		vrla			
SNo				nt I	Descrin	tion		les equal ma	Marks	0		
5110			Assigning		Descrip				Marks		Level	
1	Explain ba for S = {6.5	acktracking .3.7} and d=	concept ar 15. Draw the	id a e sta	pply it ate spac	solve s ce tree.	subset :	sum probler	n 10	CO5	L3	
2	Apply the the following	poply the backtracking to the problem of finding Hamiltonian cycle in 6 CO5 e following graphs										
3	How brand	ch and bour	nd algorithm	ı is c	differen	t from l	backtra	cking	5	CO5	L3	
4	With the Knapsack Capacit y V	ith the help of a state space tree, solve the following instance o hapsack problem by the branch and bound algorithm. Knapsac apacit y W = 10								CO5	L3	
		Item I	No. 1		2	3	4					
		Weig	ht 4	+	7	5	3					
		Value	2 4	0	42	25	12					
5	Draw the p LIFOBB fo ,p5)=(6,3,2 the penalt size formu	portion of a or the job s (,8,5), (t1,t2, y correspor lation and ĉ	state space sequencing ,t5)=(2,1,2,1 nding to an c (.) and u (.).	e tre wit ,1) a opti	e gene th dead and (d1 imal so	rated b dlines ,d2,,dg lution?	by FIFOE instance 5)=(3,1,4 Use a v	BB, LCBB an n=5, (p1,p ,2,4). What variable tup	d 10 2, is e	CO5	L3	
6	Present a Least-Cos	program so t answer no	chema for a de.	FIF	O Bran	ch anc	l Bound	l search for	a 6	CO5	L3	

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Design and Analysis of Algorithms Month /	' Year	May /2020	
Crs Code:		18CS42 Sem: IV Marks: 100 Time:		180 m	inutes
Mod	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
ule					
1	а	Compare the orders of growth of following functions	8	CO1	L4
		i) (½) n (n-1) and n			
		ii) 3n+2 and n			
	b		12	CO1	L4
		Write the non recursive algorithm for finding the Fibonacci sequence and derive the complexity.			
		OR			
1	а	Explain the asymptotic notations with examples.	10	CO1	L4
	b	Write an algorithm for selection sort. Analyze its efficiency	10	CO1	L4
2	а	Sort the following elements using merge sort. Write the recursion tree.	10	CO2	L4
		70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides			
	la la	problem size by considering position	10	<u> </u>	
	a	Solve the recurrence relation for the time complexity. $T(n) = 2 \text{ if } n=2 T(n) = 2T(n/2) + 2 + n \text{ If } n2$	10	002	L3
		OR			
2	а		10	C:02	14
	u	Write an algorithm for Binary Search obtain the time complexity of this			-4
		algorithm for successful and unsuccessful search.			
	b	Write an algorithm for Quick Sort and sort the following	10	CO2	L4
		numbers:10,8,5,15,25,75,12.Obtain its Complexity			
3	а	Obtain the optimal solution for the job sequencing problem with dead	6	CO3	L4
		line,where n=4,profit (P1,P2,P3,P4)=(100,10,15,27) and deadlines			
	h	(UI.U2.U3.U4)=(2,1,2,1) Define MST Apply DDIMS and KDUSKAL algorithm for the following graph	11	<u> </u>	
	D	to get MST. Show the intermediate steps	14	003	L4
		2 6 3 5			
		E 2			
		OP			
2	а	Explain the concepts of greedy technique for prim's algorithm. Obtain minimum cost	10	CO3	
	b	spanning tree for the graph whose weight matrix is given below	10	CO3	 L4
4	a	spanning tree for the graph below Prim's algorithm. (09 Marks)	10	CO3	L4
		c A-ZSPiksha.			
		$(A) \xrightarrow{4} (D)$			
		1 11 9 18			
		$S \longrightarrow B \longrightarrow E \longrightarrow T$			
		5 16 2			
		$(C) \xrightarrow{2} (F)$			

	b	Generate transitive closoure for given graph.	10	CO4	L4
		OR			
3	а	Explain warshall algorithm to find the transitive closure of a directed graph. Apply this	12	CO4	L4
		algorithm to the graph given below. (08 Marks)			
		@			
	b	Write	8	CO4	L4
	2	Cive t	10	COF	10
5	a	for 4-queens problem using state space tree.	10	005	∟3
	b	Apply backtracking to solve the following instance of the subset-sum problem : S={1,3,4,5} and d=11. Draw the state space tree.	10	CO5	L3
		OR			
5	а	Apply backtracking based graph coloring algorithm for the graph given below with m=4. Give state space tree showing first 3 valid assignments.	10	CO5	L3
	b	Give the backtracking based algorithm to the problem of finding Hamiltonian cycle in the graph	10	CO5	L3
		· • • ·			

2. SEE Important Questions

Cours	Course: Design and Analysis of Algorithms Month							Month	/ Year	May /2	2020	
Crs C	ode:	18CS42	Sem:	4		Marks:		100	Time:		180 mi	nutes
	Note	Answer all FI	VE full ques	tions. All q	luestio	ns carry e	qua	al marks.		-	-	
Mod	Qno.	Important Qu	lestion							Marks	со	Year
ule												
1	а	Explain all the mathematical notations used for the analysis of an algorithm									CO1	2016
	b	Explain the method of comparing the order of the growth of two functions using limits. Compare order of growth of following functions i) log n and sqrt(n) ii) (log 2 n)2 and log 2 n square								06	CO1	2015
	С	Explain in brief the basic asymptotic efficiency classes.								10	CO1	2017
2	а	Solve the following recurrence relations x(n) =3x(n-1) for n>1,x 1)=4 and x(n)=x(n/2)+n for n>1,x(1)=1,n=2k							06	CO2	2015	
	b	Explain and A	Analyze the	merge sor	t algor	rithm.				10	CO2	2016
	С	How quick so	ort can be in	nproved?						04	CO2	2015

3	а	Explain Kruskal's Algorithm With an example	10	CO3	2016
	b	Construct a Huffman code for the following data: Character : A B C D - Probability: 0.4 0.1 0.2 0.15 0.15	10	CO3	2015
4	a	Write Warshall's algorithm and apply it to compute transitive closure for the directed graph with the adjacency matrix shown below: A B C D A 0 1 0 0 B 0 0 0 1 C 0 0 0 0 D 1 0 1 0	10	CO4	2014
	b	Explain the dynamic programming with Floyd's algorithm in detail. Apply Floyd's all pairs shortest problem. For the digraph given below	10	CO4	2013
	С	What is the Optimal Binary Search Tree problem? Explain how principal of optimality holds for this problem. Also explain how it is solved using dynamic programming.	8	CO4	2012
	d	What is the difference between Greedy approach and Dynamic Programming? Explain with example	5	CO4	2013
5	а	Write an algorithm for sum of subset problem using backtracking. Also solve the following instance of sum of subset problem : S ={1,5,2,7} with d = 8.	10	CO5	2016
	b	Apply Branch and Bound algorithm to solve the travelling salesman problem for the graph with a cost adjacency matrix is as follows. A B C D E A 0 3 1 5 8 B 3 0 6 7 9 C 1 6 0 4 2 D 5 7 4 0 3 E 8 9 2 3 0	10	CO5	2014
	С	Show that Hamilton cycle problem is NP-Complete.	5	CO5	2014
	d	Explain the terms P, NP, NP-Hard and NP-Complete with suitable example. Also give relationship between them.	6	CO5	2014

Course Outcome Computation

Academic Year:

Odd / Even semester														
INTERNAL TES			T1			T2								
Course Outcome		CO1	CO1 CC)2 CO3			CO4				CO6		
QUESTION NO)	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-	
USN-1		5	2	10				10	3	9	3	4	1	
USN-2		5	2	8	3									
USN-3		7	3	7	3	10	3	8	3	8	3	5	2	
USN-4						4	1	10	3	8	3	6	2	
USN-5		8	3	6	2	9	3	10	3	8	3			
USN-6								10	3	9	3	4	1	
Average Attainment	CO		2.5		2.75		2.33		3		3		1.5	

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1	PO)3 P		03	PO1		PO12		PO12		
Weight of CO - PO	3			1		3	2	2	i	2	e e e e e e e e e e e e e e e e e e e	3	
Course Outcome	CO1		С	02	С	03	CC	D4	C	05	CC	06	
Test/Quiz/Lab			T1	L					Т	.2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	(
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	-
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			-
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
18CS42				Cop	yright ©20	17. cAAS.	All rights	reserved	l				