Ref No:		

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	BS
Semester:	4
Course Code:	18MAT41
Course Title:	COMPLE ANALYI,PROBABILITY&TATITICAL METHODS
Credit / L-T-P:	3 / 2:2:0
Total Contact Hours:	50
Course Plan Author:	PUJITHA G

Academic Evaluation and Monitoring Cell

No.29, Chimney Hills, Hesaragatta Road, Chikkabanavara Bangalore -560090, Karnataka, India Phone/ Fax: +91-08023721315/23721477 Web: www.skitorg.in

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	•
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	_
B. OBE PARAMETERS	
1. Course Outcomes	_
2. Course Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	_
E1. CIA EXAM – 1	
a. Model Question Paper - 1	_
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module - 3	
Module – 4	-
E2. CIA EXAM – 2	19
a. Model Question Paper - 2	_
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module - 5	
E3. CIA EXAM – 3	22
a. Model Question Paper - 3	
b. Assignment – 3	23
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	28

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME/CV/ECE/CSE/ ISE/EEE
Year / Semester :	IV	Academic Year:	2019-20
Course Title:	Complex analyi,probability&tatitical methods	Course Code:	18MAT41
Credit / L-T-P:	3/ 2:2:0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PUJITHA G	Sign	Dt: 10-02-2020
Checked By:		Sign	Dt:

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2

concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Complex Variables: Review of a function of a complex	10	Analytic	L3
	variable, limits,		functions	
	continuity, differentiability. Analytic functions-Cauchy-			
	Riemann			
	equations in cartesian and polar forms. Properties and			
	construction of			
	analytic functions.			
	Conformal transformations, discussion of	10	Integrals and	L4
	transformations W= $\left(z^2\right)$ w= e^z and bilinear		complex analysis	
	transformations-problems.Complex line integrals-Cauchy's			
	theorem andCauchy's integral formula,			
	Residues.poles.Cauchy's Residue theorem			
	(without proof) and problems.			
3	Probability Distributions: Random variables (discrete and	10	Random	L3
	continuous),		variables	
	probability mass/density functions. Binomial distribution, Poisson			
	distribution. Exponential and normal distributions, problems.			
	distribution. Exponential and normal distributions, problems.			
4	curve fitting ,Statistical methods, lines of regression,	10	Data analyzing	L3
"	correlation , rank correlation.		Data anatyzing	_5
5	Joint probability distribution: Joint Probability distribution for	10	Discrete random	L3
_	two discrete random variables, expectation, covariance,		variables.	
	correlation coefficient.		Sampling	_
	Sampling Theory: Sampling, Sampling distributions, standard		distribution in	3
	error, test of hypothesis for means and proportions,		accepting or	
	confidence limits for means, student's t-distribution, Chi-		rejecting the	
	square distribution as a test of goodness of fit.		hypothesis.	
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source

3. Research: Recent developments on the concepts - publications in journals; conferences etc.

3. Rese	arcn: Recent developments on the concepts – publications in journals; co	riierence	S etC.
Modul es	Details	Chapters in book	Availability
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, 43 rd Ed.,2015.		In Dept
2	E.Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed.(Reprint),2016.		In Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)		
1	C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th Edition, 2.McGraw-Hill Book Co.,New york,1995.		Not Available
2	James Stewart:"Calculus- Early Transcendentals", Cengage Learning India Private Ltd.,2017.		Not Available
3	B.V.Ramana:"Higher Engineering Mathematics" 11 th Edition Tata McGraw- Hill,2010.		In Dept
4	Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford UniversityPress, 3 rd Reprint, 2016.		Not Available
5	Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for Semesterl and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015.		Not Available
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	01. <u>https://youtu.be/f0GaD2p-x3c</u>		
	02. https://youtu.be/AvFs2zi3450		
	03. https://youtu.be/pB41_cA8zck		
	04. https://youtu.be/lskNRQdSWXo		
	05. https://youtu.be/EVPb2GWb-Rc		
	06. https://youtu.be/5WCDuGkj_Fw		
	07. https://youtu.be/XJYdcNiHHxo		
	08. https://youtu.be/6ZCWdyrRRKw		
2	09. https://youtu.be/CFBYX-9ywlw 1. https://nptel.ac.in/courses/111107056/		
	1 https://pptel.ac.in/courses/111105041/		
3	1. https://nptel.ac.in/courses/111105041/ 2 https://nptel.ac.in/content/storage2/nptel data3/html/mhrd/ict/		
٥	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/		
3	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf		
3	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/		
	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf		
4	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E		
4	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=0WejWgMiTGg		
	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E		
4	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=0WejWgMiTGg https://www.youtube.com/watch?v=LSIgQH06j74		
5	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=OWejW9MiTGg https://www.youtube.com/watch?v=LSIgQH06j74 https://www.youtube.com/watch?v=TvCzRW1hfUk		
4 5 G	2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=OWejW9MiTGg https://www.youtube.com/watch?v=LSIgQH06j74 https://www.youtube.com/watch?v=TvCzRW1hfUk		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

	its reserved.					
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules 1		Complex analysis,proba bility&stastistial methods	Calculus of complex function		Knowledge of analytic functions.	Level L2
2	18MAT41		Conformal transformation&complex integration	er	Knowledge of Integrals&complex Analysis	L2
3		Complex analysis,proba bility&stastistial methods	probability		Knowledge of Random Variables	L2
4	18MAT41	Complex analysis,proba bility&stastistial methods	Curve fitting&staistical methods		Knowledge of Data Analyzing	L2
5		Complex analysis,proba bility&stastistial methods	Joint probability&sampling theory	M4	Knowledge of Dicrete Random Variables&sample Distributing in Accepting the Hypothesis	3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
	Topic / Description	Alea	Remarks	
ules				Level
1	Calculus of complex function	HE		L4
2	Conformal transformation&complex	HE		L4
	integration ·			
3	probability	HE		L6
4	Curve fitting&staistical methods	HE		L4
5	Joint probability&sampling theory	HE		L4
_				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts

per Module. Write 1 CO per Concept.

0	0 0.0.00	7 1 00 per 001100pt.					
Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18MAT41	Apply the knowledge of complex	10	Analytic	Lecture	Assignme	L3
		analysis its properties and		functions		nt and	
		construction of analytical functions.				slip test	
2,4	18MAT41	Analyze various transformations to	10	Integrals	Lecture	Assignme	L3 &L4
		convert one plane to another		and		nt and	

Sampling the bet relation between the variables. 10 Random variab	-	-	Total	50	-	-	-	L3-L4
finding the bet relation between the variables. 3	5		inference problems,of testing of		distribution in accepting or rejecting the		nt and	L3
finding the bet relation between analysis			measures ,distribution function and its properties and also apply various inequalities in statistical analysis.		variables, Discrete random variables &Statistical		nt and slip test	
Altrigits reserved.			•		complex analysis		slip test	

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod		CO	Level
ules	Compiled from Module Applications.		
1	To study the nature of electromagnetic wave in conductors	CO1	L3
2	To study the nature of complex potential in field theory Curve fitting is the process	CO2	L3&L4
	of constructing a curve that has the best fit to a series of data points.		
3	To analyze problems associated with optimization of digital circuits	co3	L3
4	To solve problems related to information and coding theory&To smoothen and	CO4	L3
	prediction of discrete data in digital computers & cruise control system in motor		
	vehicles.	l	

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability

required to accomplish it.

required to decompliants.							
Mod	d Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev		
ules			Level		el		
-	CO	РО	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-		
1	CO1	PO1	3	Apply the knowledge of Complex Variables in finding the solution to complex engineering problems.	L3		
1	CO1	PO2	3	Formulate engineering problems using first principles of Complex Variables .	L3		
1	CO1	PO8	2	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3		
1	CO1	PO9		Function effectively as an individual in multidisciplinary settings using Complex Variables .	L3		
1	CO1	PO10		Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3		
1	CO1	PO12		Recognize the need for life- long learning with practical applications in engineering field using Complex Variables .	L3		
2,4	CO2	PO1	_	Apply the knowledge of Statistical methods in finding the solution to complex engineering problems.	L3& L4		
2,4	CO2	PO2	3	Formulate and review engineering problems using first principles of	L3&		

All rig	hts rese	erved.			
				Statistical methods.	L4
2,4	CO2	PO3	2	Develop and Design solutions for complex engineering problems using Statistical methods	L3& L4
2,4	CO2	PO8	2	Apply ethical principles and commit to professional ethics and	L3&
				responsibilities and norms of the engineering practice.	L4
2,4	CO2		3	Function effectively as an individual in multidisciplinary settings using Statistical methods .	L3& L4
2,4	CO2	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3& L4
2,4	CO2	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Statistical methods.	L3& L4
3	CO3	PO1	3	Apply the knowledge of Probability Distributions in finding the solution to complex engineering problems.	
3	CO3	PO2	2	Formulate engineering problems using first principles of Probability Distributions .	L3
3	CO3	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
3	CO3	PO9	3	Function effectively as an individual in multidisciplinary settings using Probability Distributions .	L3
3	CO3	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
3	CO3	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Probability Distributions .	L3
5	CO ₄	PO1	3	Apply the knowledge of Sampling Theory in finding the solution to complex engineering problems.	L3
5	CO ₄	PO2	3	Formulate engineering problems using first principles of Sampling Theory	L3
5	CO ₄	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
5	CO ₄	PO9	2	Function effectively as an individual in multidisciplinary settings using Sampling Theory .	L3
5		PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
5	CO ₄	PO12	4	Recognize the need for life- long learning with practical applications in engineering field using Sampling Theory .	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	1	Course Outcomes					Pi	rogr	am	Οι	utco	ome	es			-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО		Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12		el
1		Apply the knowledge of complex analysis its properties and construction of analytical functions.	2.5	2.5						2.5	2.5	2.5		2.5		L3
2,4		Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	2.5	2.5	2.5					2.5	2.5	2.5		2.5		L3& L4
3	18MAT41.3	Learn different probability	2.5	2.5						2.5	2.5	2.5		2.5		L3

		COURSE FLA	-√I / I -	CAI	20.	ro-re	1											
All righ	its reserved.																	
		measures ,distribution function																
		and its properties and also apply																
		various inequalities in statistical																
		analysis.																
5	18MAT41.4	Solve the problem of statistical	2.5	2.5					2	2.5	2.5	2.5		2.5				L3
		inference problems of testing of																
		hypothesis.																
-	CS501PC	Average attainment (1, 2, or 3)																-
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lem	ı Ar	naly	vsis;	3. <i>E</i>	Desig	gn .	/	De	velc	pm	ent	of	Sc	luti	ons;
		4.Conduct Investigations of Compl	lex i	Prob	oler	ns;	5.M	oder	n T	001	l Us	sage	e; 6.	The	: En	gine	eer	and
		Society; 7.Environment and Su	usto	aina	bilit	У;	8.E	thics	; (9.Ir	ndiv	ridu	al	and	d	Теа	тw	ork;
		10.Communication; 11.Project N	1an	nage	eme	nt	an	d	Find	and	ce;	12	.Life	e-lo	ng	Le	earr	ning;
		S1.Software Engineering; S2.Data E													_			

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod No. of question in Exam CO Title Teach. Levels ules Hours CIA-1 CIA-2 CIA-3 Asg Extra SEE Asq Calculus of complex function CO₁ L3 10 2 2 Conformal CO₂ L4 transformation&complex integration probability CO3 10 -2 _ 2 L3 Curve fitting&staistical methods CO₂ 4 10 2 2 L3 Joint probability&sampling theory CO5 10 4 2 L3 Total 50 4 4 4

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod ules	Evaluation	Weightage in Marks		Levels
	CIA Exam – 1	30	CO2,CO3,	L3,L3

All	rio	ıhts	reserved	ł.
\neg u	HU	เบเร	16261 VEC	J

	Final CIA Marks	20	-	-
1 - 5	Other Activities – Mini Project	-		
5	Quiz - 3		_	-
	Quiz - 2		_	-
	Quiz - 1		-	-
	-			
	Seminar - 3		-	-
3, 4	Seminar - 2		-	-
1, 2	Seminar - 1		-	-
	Assignment - 3	10	CO ₂	L4
	Assignment - 2	10	CO1,co4	L3 ,L3
1, 2	Assignment - 1	10	CO2,CO3,	L3,L3
				,
	CIA Exam – 3	30	CO ₂	L4
3, 4	CIA Exam – 2	30	CO1,co4	L3 ,L3

D1. TEACHING PLAN - 1

Title:	Calculu of complex functions:	Appr	12 Hrs
	Course Outcomes	Time:	Blooms
a 	The student should be able to:		Level
1	Apply the knowledge of complex analysis its properties and construction of	CO ₁	Levet
	analytical functions		
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
1	Complex Variables: Review of a function of a complex variable, limits,	C01	L3
	continuity, differentiability. Analytic functions-Cauchy-Riemann		
	equations in cartesian and polar forms. Properties and construction of analytic functions		
2	Function of a complex variables	C01	L3
3	Analytic functions problems& theorems	C01	L3
4	Cauchy-Riemann equations in cartesian form	C01	L3
5	Cauchy-Riemann equations in polar forms	C01	L3
6	Harmonic property	C01	L3
7	Cauchy' theorems	C01	L3
8	Consequence of cauchy's theorem	C01	L3
9	Construction of analytic function	C01	L3
10	Milne thomon method problems	C01	L3
С	Application area;		
1	To study the nature of electromagnetic wave in conductors	CO1	L3
d	REVIEW QUESTIONS:		
1	Derive the Cauchy Riemanns equation in the Cartesian form.	CO1	L3
2	Derive Cauchy Riemann equations in Polar form.	CO1	L3
	(OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic in a		
	Deliverate increasing conditions for i(2) a(1,0) to be unarytic in a		

	regio		
3	Show that Z ⁿ is analytic .Hence find its derivative	CO1	L3
4	If $w=z^3$ find dw/dz .	CO1	L3
5	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v=(x-y)(x^2+4xy+y^2)$.	CO1	L3
6	Find the analytic function u+iv where u is given to be $u=e^x((x^2-y^2)\cos y-2xy\sin y)$	CO1	L3
7	If $f(z)=u+iv$ is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f'(z) ^2$	CO1	L3
8	If f(z)=u+iv is analytic function ,show that	CO1	L3
	$\left[\left \frac{\partial}{\partial x} f(Z) \right ^2 + \left(\frac{\partial}{\partial y} f(Z) \right)^2 = \left f^I(Z) \right ^2.$		
9	Find the analytic function $f(z)=u+iv$ given that $u=\mathfrak{F}(x^2+y^2)$.	CO1	L3
10	If $f(z)=u(r,\theta)+iv(r,\theta)$ is an analytic function, show that u and v satisfy	CO1	L3
	yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$		
11	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	CO1	L3
е	Experiences		

Title:	Conformal tranformation & comple integration:	Appr	7 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
	The student should be able to:	-	Level
1	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	CO2	L3 &L4
b	Course Schedule	_	_
Class N	o Portion covered per hour	-	-
1	Conformal transformation introduction	CO2	L3 &L4
2	Discussion of transformations:W=z^2	CO2	L3 &L4
3	Discussion of transformations:W=e^Z	CO2	L3 &L4
4	Discussion of transformations:W=Z+1/Z	CO2	L3 &L4
5	Bilinear transformation problems	CO2	L3 &L4
6	Complex integration introduction	CO2	L3 &L4
7	Line function integral of a complex	CO2	L3 &L4
8	cauchy's theorem	CO2	L3 &L4
9	cauchy's integral formmula	CO2	L3 &L4
10	Baed on problems	CO2	L3 &L4
С	Application Areas	_	_
1	To study the nature of complex potential in field theory Curve fitting is the	CO2	L3&L4
	process of constructing a curve that has the best fit to a series of data points.		0 1
d	Review Questions	_	_
-		-	-
1	Discussion of transformations:W=z^2	CO2	L4
2	Discussion of transformations:W=e^Z	CO2	L4
3	Discussion of transformations:W=Z+1/Z	CO2	L4

All rights reserved.

All rights res	oci ved.		
4	Find the bilinear transformation that maps the points z=-1,i,1 on to the points	CO2	L3
	w=1,i,-1 respectively.		
5	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1	CO2	L3
	respectively		
6	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto	CO2	L3
	the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.		
7	Line function , complex line integrals	CO2	L3
8	cauchy's theorem	CO2	L3
9	cauchy's integral formmula	CO2	L3
10	Baed on problems	CO2	L3
е	Experiences	-	-
1			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs			minute	es						
Cou	rse:	Complex analysis,probability&stastistial methods								
-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2 Marks CO								
1	а	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3					
	b	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic	5	CO1	L3					
		in a region								
	С	Find the analytic function u+iv where u is given to be u=e ^x ((x^2-y^2)cosy-2xysiny)	5	CO1	L3					
		OR								
2	a	Show that Z^n is analytic .Hence find its derivative If $w=z^3$ find dw/dz .	5	CO1	L3					
	b	Find the analytic function $f(z)=u+iv$ given that $u=\dot{c}\dot{c}$ $+\frac{x}{(x^2+y^2)}$.	5	CO1	L3					
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$	5	CO1	L3					
3	а	Discussion of transformations:W=z^2	5	CO2	L4					
	b	cauchy's theorem	5	CO2	L3					
	С	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively	5	CO2	L3					
		OR								
		Discussion of transformations:W=Z+1/Z	_	CO2	1 4					
4	a		5	CO2	L4					
	b	cauchy's integral formmula	5	CO2	L3					
	С	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.	5	CO2	L3					

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs Code:	18MAT41	Sem:	4	Marks:	5	Time:	90 – 120 minutes			
Course:										

All rights reserve				
ds				
	tudent to answe5r 2-3 assignments. Each assignment carries equal ma	rk.		
SNo USN	9 1	Marks	CO	Level
1	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
2	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be	5	CO1	L3
	analytic in a regio			
3	Show that Z^n is analytic .Hence find its derivative	5	CO1	L3
4	If $w=z^3$ find dw/dz .	5	CO1	L3
5	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v=(x-y)(x^2+4xy+y^2)$.	5	CO1	L3
6	Find the analytic function u+iv where u is given to be u=e ^x ((x^2-y^2)cosy-2xysiny)	5	CO1	
7	If $f(z)=u+iv$ is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f^I(z) ^2$	5	CO1	L3
8	If $f(z)=u+iv$ is analytic function ,show that $\left[\frac{\partial}{\partial x} f(Z) \right]^2 + \left[\frac{\partial}{\partial y} f(Z) \right]^2 = \left f^I(Z)\right ^2.$	5	CO1	L3
9	Find the analytic function $f(z)=u+iv$ given that $u=\dot{c}$ \dot{c} $+\frac{x}{(x^2+y^2)}$.	5	CO1	L3
10	If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$	5	CO1	L3
11	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	5	CO1	L3
12	Discussion of transformations:W=z^2	5	CO2	L4
13	Discussion of transformations:W=e^Z	<u>5</u>	CO2	L4
14	Discussion of transformations:W=Z+1/Z	5	CO2	L4
15	Find the bilinear transformation that maps the points z=-1,i,1 on to the points w=1,i,-1 respectively.	5	CO2	L4
16	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively	5	CO2	L4
17	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.	5	CO2	L4
18	Line function , complex line integrals	5	CO2	L4
19	cauchy's theorem	5	CO2	L4
20	cauchy's integral formmula	5	CO2	L4
21	Baed on problems	5	CO2	L4
22	P.T w=1+z/1-z map the region z less than are equal to 1 onto the half plane R(U) greaterthan are equal to 0 being the region ugreater than are equal to 0	5	CO2	L4
23	Find the invariant points of the following bilinear transformations w=z-1-i/z+2	5	CO2	L4

All rights reserved.

24	Bilinear transformationw=3z-4/z-1	5	CO2	L4
25	Obtain the image of the region bounded by the x=1,x=2,y=1,y=2 under the tranformation w=e^z and sketch region		CO2	L4

D2. TEACHING PLAN - 2

Title:	PROBABILITY DISTRIBUTIONS:	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Learn different probability measures ,distribution function and its properties and also apply various inequalities in statistical analysis.	CO3	
b	Course Schedule		
lass No	Portion covered per hour	-	-
1	Probability distributions: Introduction on probability some examples	CO3	L3
2	Random variables(discrete and continuous)	CO3	L3
3	probability mass/density function	CO3	L3
4	Binomial distribution based on problems	CO3	L3
5	poisson distribution based on problems	CO3	L3
6	Exponential ditribution and problems normal	CO3	L3
7	normal distribution& problems.	CO3	L3
8	More examples on dirtibutions	CO3	L3
С	Application Areas	-	-
1	To analyze problems associated with optimization of digital circuits	co3	- L3
			0
d	Review Questions	-	-
-		_	-
1	Find the binomial probability distribution which has mean 2 and variance 4/3		
2	Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1		
3	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.	CO3	L3
4	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up 1 2)Exactly 9 will live up to 7	CO3	L3
5	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up 1 2)Exactly 9 will live up to 7	CO3	L3

rights re	eserved.		
6	In sampling a large number of parts manufactured by a company, the mean number of defectives in a samples of 20 is 2. Out of 1000 such samples, how many would be expected to contain atleast three defective parts	CO3	L3
7	Given that 2% of the fuses manufactured by a firm are defective, find by using Poisson distribution, the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	CO3	L3
8	For the following normal distribution find c and also the mean and S.D of frequency distribution	CO3	L3
9	In normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation given that A(0.5)-0.19 And A(1.4)=0.42	CO3	L3
10	 i) A die is thrown 8times. Find the probability that '3' falls ii) Exactly 2 times iii) At least once At the most 7times 	CO3	L3
11	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	CO3	L3
12	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X'"Less than are equal to40 (2) X greater than are equal to 45.		L3
e	Experiences	_	-
1	<u> </u>		
2			
		•	•

Title	Curve fitting & statistical methods	Appr	13 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	Student should be able to		LEVEL
1	Analyze various transformations to convert one plane to another evaluate	CO2	L3
	complex integral and finding the bet relation between the variables.&		
	Apply to construct numerical data and solving by least square method		
	Carrier Calendala		
<u>b</u>	Course Schedule		
Class No	Portion covered per hour	-	-
1	Correlation and rank correlation problems	CO2	L3
2	More examples on rank correlation		
3	Regression and Regression coefficients	CO2	L3
4	lines of regression - problems	CO2	L3
5	Regression line XON Y &Y ON X problems	CO2	L3
6	Fitting of curves introduction- Fitting equation of straight line.	CO2	L3
7	Fitting equation of parabola.	CO2	L3
8	Second degree parabola problems	CO2	L3
9	Fitting equation of exponential curve problems	CO2	L3
10	More examples	CO2	L3

To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points. A Review Questions	С	Application Areas	-	-
Process of constructing a curve that has the best fit to a series of data points.	-	Students should be able employ / apply the Module learnings to	-	
Fit a curve of the form y=ae ^{bx} to the following data: x: 77 100 185 239 285 y: 24 34 7.0 111 196 Fit a parabola by using least squares method to the following method to the following data x: 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y: 11 13 16 2.0 2.7 3.4 4.1 Fit a traight line y=ax+b for the following data x: 1 3 4 6 8 9 11 14 Y: 12 4 4 5 7 8 9 Fit a straight line in the leat quare ence for the following data X:50 70 100 120 Y: 12 15 21 25 Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X: 1 2 3 4 5 Y: 10 12 13 16 19 Fit a curve of the form y=ae^bx for the data X: 2 3 4 5 6 7 Y: 9 8 10 12 11 13 14 Obtain the line of regression andf hence find the coefficient of correlation for the data X: 1 2 3 4 5 6 7 Y: 9 8 10 12 11 13 14 Find the correlation coefficient for the data A: 92 89 87 86 83 77 71 63 53 50 Y: 86 83 91 77 68 85 52 82 37 57	1		CO2	L
Fit a curve of the form y=ae ^{bs} to the following data: x:77 100 185 239 285 y: 24 34 70 111 196 Fit a parabola by using least squares method to the following method to the following data iii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d	Review Questions	-	-
x: 1.0	1	x: 77 100 185 239 285	CO2	L
Y: 11	2	Fit a parabola by using least squares method to the following method to the following data:	CO2	L
x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9 Fit a straight line in the leat quare ence for the following data X:50 70 100 120 Y:12 15 21 25 Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X:1 2 3 4 5 Y:10 12 13 16 19 Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82 Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Obtain the line of regresion andf hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57				
Fit a straight line in the leat quare ence for the following data X:50 70 100 120 Y:12 15 21 25 Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X:1 2 3 4 5 Y:10 12 13 16 19 Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82 Compute the coefficient of correlation and the equation of the lines of regression for the data X: 1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Obtain the line of regresion and hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	3	x:1 3 4 6 8 9 11 14	CO2	L
following data X:1 2 3 4 5 Y:10 12 13 16 19 Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82 Compute the coefficient of correlation and the equation of the lines of regression for the data X: 1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Obtain the line of regresion andf hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	4	Fit a straight line in the leat quare ence for the following data X:50 70 100 120	CO2	L
X: 0 2 4 Y:8.12 12 31.82 Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Obtain the line of regresion and hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	5	following data X:1 2 3 4 5	CO2	L
regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Obtain the line of regresion and hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	6	X: 0 2 4	CO2	L
for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	7	regression for the data X:1 2 3 4 5 6 7	CO2	L;
Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	8	for the data X:1 2 3 4 5 6 7	CO2	L
	9	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50	CO2	L;
O Compute the rank correlation coefficient for the following data		Compute the real correlation coefficient for the following date	CO2	L;

Attrigitis res	Ci vea.		
	x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70		
е	Experiences	-	-
1			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code	: 18MAT41 Sem: IV Marks: 30 Time: 75	minute	S	
Cour	rse:	Complexanalysis, probability & stastistial methods			
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	СО	Level
1	а	Find the binomial probability distribution which has mean 2 and variance 4/3	5	CO3	L3
	b	Fit a poion distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.			L3
		OR	5	CO3	L3
2	а	Given that 2% of the fuses manufactured by a firm are defective, find by using Poisson distribution, the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	5	CO3	L3
	b	Obtain the mean and S.D of the normal distribution.	5	CO3	L3
	С	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions	5	CO3	L3
3	а	Fit a parabola by using least squares method to the following method to the following data:	5	CO2	L3
		x: 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1			
	b	Fit a traight line y=ax+b for the following data x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9	5	CO2	L3
	С	Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	L3
		OR			
4	а	Find the correlation coefficient for the data	CO2	L3	L3

Attrig	JI ILO I C	served.			
		A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57			
	b	Compute the rank correlation coefficient for the following data x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	CO2	L3	L3
	С	Obtain the line of regresion andf hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L3	L3

b. Assignment – 2Note: A distinct assignment to be assigned to each student.

Note:	A dis	tinct assi	gnment t	o be assigne							
					del Assignm						
		18MAT41		IV	Marks:	10	Time:				
Cours		ds .		probability&:							
			to answe	r 2-3 assignr				_l ual ma			
SNo	Į	JSN			signment D				Marks	СО	Level
1			The pdf	of a variate	x is given b	y the follo	wing table	:	5	C03	L3
				X	0	1	2	3			
				P(x)	k	3k	5k	7k			
				For wha	at value of	k this rep	resents a	a valid			
			probab	ility distrib	ution?						
2			Fit a poi	SSon distrib	oution for th	e followin	g data and		5	CO3	L3
			calculate	e the theoret	ical frequen	ıcy	_				
			X:0 1	2 3 4	_						
			Y:122 6	50 15 2 1							
3			When a	coin is tosse	ed 4 time fin	nd the prob	ability of g	gettinh	5	CO3	L3
			1) exact	ly one head	2)atmot 3 h	ead 3) at n	not 2 heads	5			
4			The nun	nber of telep	hone lines b	ousy at an	instant of t	ime is	5	CO3	L3
			binomia	l variate wit	h probabilit	y 0.1 that	a line is bu	sy. If			
			10 lines	are chosen a	at random, v	what is the	probability	y that			
			i) No lin	e is busy ii)	At least 5	lines are b	ousy iii) At	most			
			3 lines a	are busy.							
5			Given th	nat 2% of the	e fuses man	ufactured 1	by a firm a	re	5	CO3	L3
			defective	e, find by us	ing Poisson	distributi	on ,the				
			probabil	ity that a bo	x containing	g 200 fuse	s has				
			i)No def	ective fuses	ii)3 or mor	e defective	e fuses iii)A	At least			
			one defe	ective fuse.							
6				bability that					CO3	L3	L3
				it of 10 men	, now at the	age of 60	,find prob	ability			
			that								
			1)Atles	st 7 will live	e up) 2)Exa	actly 9 w	ill live up	to 7			
											_
7				ling a large					CO3	L3	L3
				y, the mean							
				Out of 1000	-		•	d be			
			expected	d to contain	atleast three	e defective	parts				

/ ttt rigit	is reserved.			
8	5In normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation given that A(0.5)-0.19 And A(1.4)=0.42	5	CO3	L3
9	 A die is thrown 8times. Find the probability that '3' falls Exactly 2 times At least once At the most 7times 	5	CO3	L3
10	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	5	CO3	L3
11	The probability that a pen manufactured by a company will be defective is 0.1. if 12 such pens are selected, find the probability that i) exactly 2 will be defective ii) at least 2 will be defective iii) none will be defective.	5	CO3	L3
12	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions		co3	L3
13	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X""Less than are equal to 45.		co3	L3

D3. TEACHING PLAN - 3

This is the same of the effective states of the same through the same	Α.	
Title: Joint probability distribution & sampling theory	Appr	10 Hrs
	Time:	
a Course Outcomes	СО	Bloom
- The student should be able to:	-	Level
To solve problems related to information and coding theory&To smoothen an prediction of discrete data in digital computers & cruise control system in moto vehicles.		L3
		L3
b Course Schedule	_	-
Class Portion covered per hour	-	-
1 Introduction on joint probability distribution	CO4	L3
2 joint probability distribution for two discrete random variables	CO4	L3
3 Problems based on expectations	CO4	L3
4 Problems on co variance	CO4	L3
5 Sampling theory: Introduction to sampling distributions,	CO4	L3
6 standard error, test of hypothesis for means	CO4	L3
7 Type 1&Type 2 errors	CO4	L3
8 Confidence limits for means students's t-distribution	CO4	L3
9 Chi-square distribution as a test of goodness of fit	C04	L3
10 More examples on sampling theory	CO4	L3
c Application Areas	-	_

rights	reserved.	d bo abla area	01/0551	v. +b	dula lases!:	age to		
1	Students should					gs to g of hypothesis.	- CO4	
	Solve the proble	em or statistica	timerenc	e proble	erris,or testiri	g of Hypothesis.	004	<u></u>
d	Review Question	ons					-	-
1	the standard	l error of the	e distrib	oution	of means	on is equal to	of	L3
		a sample of			_	probability the population		
2	If the mean of an	infinite populatio				3,how large a samp		L3
3	Find the probabili are heads	ty that in 100 tos	ses of a fai	r coin bet	ween 45% and	d 55% of the outcor	mes CO4	L3
4		Out of 1000 samples of 200 children each in how many would you expect to find that 1)i than 40% are boys,2) between 40% and 60% are boys,3)55% or more are girls						
5	of 82 and a standa population from v	A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18.find the 95% confidence limits for the mean of the population from which the sample is drawn						
6	and 2.92 find 1)95	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student population						
7	A biased coin is to limits for the prop					he 95% confidence	CO ₄	L3
8		ossed 500 times a	nd head tu	rns up 12	0 times .find t	he 95% confidence	CO4	L3
9		d 400 times and the	ne head tur			ne hypothesis that the	he CO4	L3
10	Find how many he significance.			vill ensure	e its fairness at	0.05 level of	CO4	L3
11	F or a random san deviations from the	ne mean equal to	135 and dr	awn from	a normal pop	e squares of the ulation, find the 95% an of the population		L3
12		ents 't' for the	followir	ng value	es in a sam	nple of eight:-4,		L3
13		f a coin,118 hea	ds and 82	tails we	ere observed	I test the hypothe	esis CO4	L3
14		vn 60 times a ne face x is give	nd the f n by the f	requenc followinç	cy distribution g table	on for the num	ber CO4	L3
16	The joint distrib	oution of two ra	ndom vai	riables X	& Y is as fo	llows		
	X\Y	-4		2		7		
	1	1\8		1\4		1\8		
	5							
17	lvi v							
Τ/	X\Y	-2	-1		4	5		

rigitis	reserved.	0.1	0.2	0	0.3		
	2	0.2	0.1	0.1	0		
	1)E(X) &E(\) 2) S.D OF \) 3)COV(X&	Y) K&Y	probability distri	ibution of x&y		-	_
е	Experience	ces				-	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	Code	18mat41 S	Sem: IV	Marks	30	Time:	75 minut	tes	
Coı	urse:			y&stastistialme		·			_
	-			, each carry eq			Marks		Level
1	а	standard drawn fr sample c	error of the o om that popu of size 25 draw	distribution of I lation.find the n from the pop	means of a probability ulation will		00	CO4	L3
	b	The joint dis	tribution of two	o random varia	bles X & Y	is as follows	5	CO ₄	L3
		X\Y	-4	2		7			
		1	1\8	1\4		1\8			
		5	1\4	1\8		1\8			
		1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) p(x,y)							
	С	A normal population has a mean 0.1 and a standard deviation 2.1 find the probability that the mean of a sample of 900 members will be negative						CO4	L3
				OR					
2	а	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio						CO4	L3
	b	X\Y	-2	-1	4	5		CO4	L3
		1	0.1	0.2	0	0.3			
		2	0.2	0.1	0.1	0			
		1. Also fi 2. S.D of 3. COV(> 4. Correl							
	С	nd 5 in	CO4	L3					

T	113 163	erveu.			
ĉ	a	A population consists of 4 numbers 3,7,11,15 1 Find the mean and S.D. of the sampling distribution of mean by considering sampling of size 2 with replacement		CO4	L3
k			5	CO4	L3
C		A manufacturer claimed that atleast 95% of the equipment which he supplied to a factory conformed to specification an examination of a ample of 200 pieces of equipment revealed that 18 of them were faulty.tet hi claim at a significancelevel of 1% and 5%		CO4	L3
_		OR			
â		Find the students 't' for the following values in a sample of eight:-4,-2,-2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	L3
k		Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 1 2 3, taking the mean of the population to be zero.	5	CO4	L3
C		 A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6 2. Frequency:15 6 4 7 11 17 test the hypothesis that the die is unbiased 		CO4	L3
-					

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

11000.	7 Caistillet as	ongrimment to		ca to cacin ste					
				del Assignme	ent Questic				
Crs Co	ode: 18mat	41 Sem:	IV	Marks:	10	Time:	90 – 120	minute	S
Cours	ods			/&stastistialm					
Note:	Each stude	nt to answer	2-3 assign	ments. Each a	assignmen	t carries equal ma	ark.		
SNo	USN		Α	ssignment De	escription		Marks	СО	Level
1				te population is a sample must l		andard order that there be or	5 ie	CO ₄	L3
			00 that the r						
2		Find the probability that in 100 tosses of a fair coin between 45% a 55% of the outcomes are heads					d 5	CO ₄	L3
3		Out of 1000 samples of 200 children each in how many would you expect to find that 1)iess than 40% are boys,2)between 40% and 60% are boys,3)55% or more are girls						CO4	L3
4		found to ha	ve a mean o	f 82 and a stand	lard deviation	inite population is on of 18.find the 959 om which the samp	I	CO ₄	L3
5			dence limit			up 120 times .find the heads turning up		CO4	L3
6		company is taken in ord	estimated a	as 100 hours. F % confident tha	ind how lar	manufactured by rge a sample must be n the estimated mea	e	CO4	L3
7		company is taken in ord	estimated a	as 100 hours. F % confident tha	ind how lar	manufactured by rge a sample must be n the estimated mea	e	CO4	L3

All rights reserve	ad	COUF	RSE PLAN - CA	/ 2018-19					
8	Find the stude				a sample of opulation to be	5	CO ₄	L3	
9	In 200 tosses of test the hypot of significance	hesis that t				5	CO4	L3	
10	Find how many 0.05 level of sig	heads in 64	tosses of a coi	n will ensu	re its fairness at	5	CO ₄	L3	
11	In 200 tosses of test the hypot of significance	of a coin,11 hesis that t				5	CO4	L3	
12	Consider the r in example sh	markov cha ow that in	the long ru	n,A will th	ttern described row the ball 20 ball 40 percent		CO ₄	L3	
13	A populati 1 Find the	mean and		sampling	5 g distribution of th replacement	5	CO ₄	L3	
14	The distribution of the state o	The weights of 1500 ball bearings are norm distributed with a mean of 635 gms and S.D of gms if 300 random samples of size 36 are drawn for this population determine the expected mean and of the sampling distribution of mean if sampling I do 1) with replacement 2)without replacement							
15	X\Y -	2	-1	4	5	5	CO ₄	L3	
	1 C	0.1	0.2	0	0.3				
	2 0	0.2	0.1	0.1	0				
	6. Also fin 7. S.D of > 8. COV(X, 9. Correla	d E(X),E(Y) (,Y Y) tion of X Al verify th	AND E(XY)		ibution of X ,Y				
16	times .find	the 95% c		mits for th	ad turns up 120 ne proportion of	5	CO4	L3	
17					es X & Y is as	5	CO ₄	L3	
	X\Y	-4	2		7				
	1	1\8	1\4		1\8				
	5	1\4	1\8		1\8				
	1) E(X) AND E(` 3) sigma x &sig 4) cov(x ,y) correlations (x	gma y							
18	which he s an examir revealed	A manufacturer claimed that atleast 95% of the equipm which he supplied to a factory conformed to specifical an examination of a ample of 200 pieces of equipm revealed that 18 of them were faulty.tet hi claim a significancelevel of 1% and 5%							

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Complexanalysis, probability & stastistial methods Mon	th / Year	2020-	-04-01
Crs C	ode:	18MAT41 Sem: VII Marks: 80 Time			ninutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	а	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
		Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analyti in a regio	5 c	CO1	L3
	С	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v=(x-y)(x^2+4xy+y)$	²). 5	CO1	L3
1	а	OR Find the analytic function u+iv where u is given to be $u=e^x((x^2-y^2)\cos y-2xy\sin y)$	5	CO1	L3
	b	If $f(z)=u+iv$ is analytic function, show that $\left[\frac{\partial}{\partial x} f(z) \right]^2 + \left[\frac{\partial}{\partial y} f(z) \right]^2 = \left f^I(z)\right ^2.$	5	CO1	L3
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$ Find the analytic function $f(z)=u+iv$ given that $u=i/i$ $+\frac{x}{2}$	5	CO1	L3
		Find the analytic function $f(z)=u+iv$ given that $u=i(\lambda)+\frac{x}{(x^2+y^2)}$.			
2		Discussion of transformations:W=z^2 Find the bilinear transformation that maps the points z=-1,i,1 on to points w=1,i,-1 respectively.	5 the 5	CO2	L4 L4
	С	cauchy's theorem	5	CO2	L4
		OR			
2	a	cauchy's integral formula	5	CO2	L3
		Find the bilinear transformation that transforms the points z1=1,z2=i,z3 onto the points w1=2,w2=i,w3=-2 find the fixed points of transformation.		CO2	L3
	С	Discussion of transformations:W=Z+1/Z	5	CO2	L4
3		Find the binomial probability distribution which has meal 2 and variance 4/3	n 5	CO3	L3
		Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	5	co3	L3
		OR			
3	а	The number of telephone lines busy at an instant of time is binomia variate with probability 0.1 that a line is busy. If 10 lines are chosen		CO3	L3

<u>All rig</u>	hts res	erved.	COURSE PLA	AIN - CAT Z					
		random, what is the p lines are busy iii) At i			is busy ii) <i>i</i>	At least 5			
	b	Given that 2% of the by using Poisson distraction 200 fuses has i)No defective fuses i defective fuse.	ibution ,the prob	oability 1	that a box c	ontaining	5	CO3	L3
	С	For the following nor S.D of frequency dist		find c ar	nd also the i	nean and	5	CO ₄	L3
	D	In normal distribution over 64 .Find the mea And A(1.4)=0.42	31% of the iter				5	CO3	L3
4	a	Fit a curve of the form y= x: 77 100 185 y: 2.4 3.4 7.	239 285	g data :			5	CO2	L3
	b	Fit a parabola by using lea	_	to the follo	owing method	to the	5	CO2	L3
		following data: x: 1.0 1.5 2.0 y: 1.1 1.3 1.6	2.5 3.0 3.5 2.0 2.7 3.4						
	С	Fit a traight line y=ax x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9			ì		5	CO2	L3
			OR5						
4	а	Obtain the line of reg correlation for the dat X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13	a	e find th	e coefficier	t of	5	CO2	L3
	b	Find the correlation c A:92 89 87 86 83 Y:86 83 91 77 68	pefficient for the	50			5	CO2	L3
	С	Compute the rank cor x:68 64 75 50 64 y:62 58 68 45 81 6	80 75 40 55 6	54	ne following	gdata	5	CO2	L3
 5	a						5	CO ₄	L ₃
ر	a	X\Y -2	-1	4		5	J	004	<u>_</u> 3
		1 0.1	0.2	0		0.3	1		
		2 0.2	0.1		.1	0.5	1		
			the marginal pro			_	_		
			X),E(Y) AND E(XY						

All rig	ghts re	served.								
			S.D of X,Y COV(X,Y) Correlation of X AN							
			Further verify that	X &Y are depende	nt random variables.					
	С		ossed 400 times and t		6 times test the hypothesis					
				OR						
5	а	deviations fro	F or a random sample of 16 values with mean 41.5 and the sum of the squares of the deviations from the mean equal to 135 and drawn from a normal population, find the 95% confidence limits and the confidence interval, for the mean of the nonulation							
	b	Find the stu 2,0,2,2,3,3, to	5,-5	CO ₄	L3					
	С	The joint di	5	CO ₄	L3					
		X\Y	-4	2	7					
		1	1\8	1\4	1\8					
		5	1\4	1\8	1\8					
		1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) correlations (x,y)								

2. SEE Important Questions

		portant adestrons				
Cours	se:	Complexanalysis,probability&stastistialmethods Mor	nth / Y	ear	2020-	07-01
Crs C	ode:	18MAT41 Sem: 4 Marks: 80 Tim	ie:		180 m	ninutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-		-	
Mod ule	Qno.	Important Question	M S	lark	CO	Year
1	а	Derive the Cauchy Riemanns equation in the Cartesian form.	5		CO1	2014
	b	Derive Cauchy Riemann equations in Polar form	5		CO1	2015
	С	If $w=z^3$ find dw/dz .	5		CO1	2009
	d	Construct the analytic function whose real part is e^x (xsiny +ycosy)	5		CO1	2010
		If $f(z)=u(r,\theta)+iv(r,\theta)$ is an analytic function, show that u and v	5		CO1	2009
		satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$				
	f	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	5		CO2	2007
			5	ı	CO2	2017
2	a	Discussion of transformations:W=z^2	5	ı	CO2	2009
	b	Discussion of transformations:W=e^Z	5	ı	CO2	2011
	С	Discussion of transformations:W=Z+1/Z	5	ı	CO2	2013
	d	Find the bilinear transformation that maps the points z=-1,i,1 on to points w=1,i,-1 respectively.	the 5		CO2	2015
	е	Find the bilinear transformation that maps the points 1,i,-1 onto the pi,0,-1 respectively	oints 5		CO2	2015
	f	cauchy's integral formmula	5		CO2	2017
	g	P.T $w=1+z/1-z$ map the region $ z $ less than are equal to 1 onto the plane R(U) greaterthan are equal to 0 being the region ugreater thar equal to 0			CO2	2017

ts rese	erved.					
 a	The pdf of a variate x is given by the following table:		CO3	2017		
	X 0 1 2 3 4 5			,		
		1k				
b		5	CO3	200		
	fuses has					
•	defective fuse.	_	CO2	201		
C						
	A(1.4)=0.42					
d	4. A die is thrown 8times. Find the probability that '3' falls	5	CO3	201		
	5. Exactly 2 times					
			CO3	201		
0	X -2 -1 0 1 2			201		
	P(X) 0.1 K 0.2 2k 0.3					
f		.5	CO ₃	201		
g	Find the probability that in 100 tosses of a fair coin between 45%	5	CO3	201		
1.	and 55% of the outcomes are heads		00-			
n			CO3	201		
	are boys,3)55%or more are girls					
a	Fit a curve of the form $y=ae^{bx}$ to the following data:	5	CO2	201		
	x: 77 100 185 239 285					
	y: 2.4 3.4 7.0 11.1 19.6					
h	Fit a narabola by using least squares method to the following method to the following	5	CO2	201		
D	data:	5	002	201		
	x : 1.0 1.5 2.0 2.5 3.0 3.5 4.0					
	_					
	y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1					
	Fit a traight line y=ax+b for the following data	5	CO2	201		
С		1				
С	x:1 3 4 6 8 9 11 14					
	Y:1 2 4 4 5 7 8 9					
c d		5	CO2	200		
	c d f	X	X	X		

All ri	ghts res	erved.			
	е	Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X:1 2 3 4 5 Y:10 12 13 16 19	5	CO2	2009
	f	Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	2010
	g	Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	h	Obtain the line of regresion andf hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	i	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	5	CO2	2013
	j	Compute the rank correlation coefficient for the following data x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	5	CO2	2005
5	а	If the mean of an infinite population is 575 with standard deviation8.3,how large a sample must be used in order that there be one chance in 100 that the mean of the sample is less than 572?	5	CO ₄	2016
	b	Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads	5	CO4	2015
	С	Out of 1000 samples of 200 children each in how many would you expect to find that 1)iess than 40% are boys, 2) between 40% and 60% are boys, 3)55% or more are girls	5	CO4	2016
	d		5	CO ₄	2009
	е	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student population	5	CO4	2008
	f	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	2012
	g	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	2015
	h	A coin was tossed 400 times and the head turned up 216 times test the hypothesis that the coin is unbiased at 5% level of significance./	5	CO4	2018
	ı	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of significance.	5	CO4	2017
	j	F or a random sample of 16 values with mean 41.5 and the sum of the squares of the deviations from the mean equal to 135 and drawn from a normal population, find the 95% confidence limits and the confidence interval, for the mean of the population.	5	CO ₄	2015
	k	Find the students 't' for the following values in a sample of eight:-4,-2,-2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	2005

All rights reserved.

all rights res	servea.						
l				were observed test th els of significance	e5	CO ₄	2009
m	A die is thrown 60 times and the frequency distribution for the numb appearing on the face x is given by the following table						2011
n	X:123456					CO4	2015
0	f:15 6 4 7 11 17 test the hypothesis that the die is unbiased					CO4	2017
р	The joint distribution of two random variables X & Y is as follows						2018
	X\Y	-4	2	7			
	1	1\8	1\4	1\8			
	5	1\4	1\8	1\8			
	1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) p(x,y)						