(Section 20)	
	D
Contraction of the second seco	
	AAC /

A DUNNER OF	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
Le la	Title:	Course Plan	Page: 1 / 24
igni ©2017. c.	AAS. All rights reserved.		

Table of Contents

17CS653 : Operations Research	2
A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	2
3. Course Material	
4. Course Prerequisites	
B. OBE PARAMETERS	4
1. Course Outcomes	
2. Course Applications	4
Food and Agriculture	4
Applications in Engineering	4
Transportation Optimization	4
Efficient Manufacturing	
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	9
D1. TEACHING PLAN - 1	10
Module - 1	10
Food and Agriculture	10
Module – 4	11
E1. CIA EXAM – 1	13
a. Model Question Paper - 1	13
b. Assignment -1	15
D2. TEACHING PLAN - 2	16
Module – 5	16
Module – 2	18
E2. CIA EXAM – 2	19
a. Model Question Paper - 2	
b. Assignment – 2	20
D3. TEACHING PLAN - 3	20
Module – 3	20
Efficient Manufacturing	21
E3. CIA EXAM – 3	
a. Model Question Paper - 3	21
b. Assignment – 3	22
F. EXAM PREPARATION	23
1. University Model Question Paper	
2. SEE Important Questions	26

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17CS653 : Operations Research

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	CS
Semester :	VI	Academic Year:	2019-20
Course Title:	OPERATIONS RESEARCH	Course Code:	17CS653
Credit / L-T-P:	3/3-0-0	SEE Duration:	3 Hours
Total Contact Hours:	40	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	5
Course Plan Author:	Dr.Hemalatha K.L.	Sign:	Dt:
Checked By:		Sign:	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Introduction, Linear Programming: Introduction: The origin, nature and impact of OR; Defining the problem and gathering data; Formulating a mathematical model; Deriving solutions from the model; Testing the model; Preparing to apply the model; Implementation . Introduction to Linear Programming Problem (LPP):Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples.	8	Formulate LPP.	L4
2	Simplex Method –1:The essence of the simplex method; Setting up the simplex method; Types of variables, Algebra of the simplex method; the simplex method in tabular form; Tie breaking in the simplex method, Big M method, Two phase method.	8	Solution of Linear Model (simplex method & graphical method)	L4
3	Simplex Method –2: Duality Theory -The essence of duality theory, Primal dual relationship, conversion of primal to dual problem and vice versa. The dual simplex method.	8	optimization techniques	L3
4	Transportation and Assignment Problems: The transportation problem, Initial Basic Feasible Solution (IBFS) by North West CornerRule method, MatrixMinima Method, Vogel's Approximation Method. Optimal solution by Modified Distribution Method (MODI). The Assignment problem; A Hungarian algorithm for the assignment problem. Minimization and Maximization varieties in transportation and assignment problems.	8	Transportation , Assignment problems	L4
5	Game Theory: Game Theory: The formulation of two persons, zero sum games;saddle point, maximin and minimax principle, Solving simple games- a prototype example; Games with mixed strategies; Graphical solution procedure. Metaheuristics: The nature of Metaheuristics, Tabu Search, Simulated Annealing, Genetic Algorithms.	8	Game Theory,Decisio n analysis.	L4

(And the second	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
	Title:	Course Plan	Page: 3 / 24
Copyright @2017. cA	AS. All rights reserved		

3. Course Material

Module	Details	Available
1	D.S. Hira and P.K. Gupta, Operations Research, (Revised Edition), Published by S. Chand & Company Ltd, 2014	In Lib
2	Reference books	
	1. S Kalavathy, Operation Research, Vikas Publishing H ouse Pvt Limited, 01-Aug-2002	In Lib
	2. S D Sharma, Operation Research, Kedar Nath Ram Nath Publishers.	In Lib
3	Others (Web, Video, Simulation, Notes etc.)	
	1.http://vtuplanet.com/m/download.php?type=papers&dir=B.E+ %28Engineering%29%2FInformation+Science+%28ISE %29%2FSem+6%2FOperations+Research%28Elective %29&file=Operations+Research+NOTES+by+Divya+-+RNSIT+ %28www.vtuplanet.com%29.pdf	Not Available
	2. <u>tu.allsyllabus.com/cse/sem_5/index.phpv</u>	

4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level
1	15MAT11 ,21	Mathematics-I	Students should have knowledge of equation solving, matrices, algorithms and geometry	1		L3
	-					

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	Cos	Teach.	Concept	Instr	Assessmen	Blooms'
	ł			Method	t Method	Level
15CS653.1	Formulate the LPP for the given data	8	Formulate	Discussio	Assignment	L4
			LPP.	n		Analyze
15CS653.2	Apply the Graphical and Simplex	8	Solution for	Problem	Slip test	L4
	method to solve the LPP, game.		Linear	solving		Analyze
			Model			
			(simplex			
			method &			
			graphical			
			method)			
15CS653.3	Select and apply optimization	8	optimization	Lecture	Seminar	L4
	techniques for various problems.		techniques			Analyze
15CS653.4	Demonstrate skills in forming and	8	Transportati	Problem	Assignment	L4
	solving assignment problems,T		on ,	solving		Analyze
	ransportation problems		Assignment			

(Second	SKIT		Rev No.: 1.0							
	Doc Code:	INST.Ph5b1.F02	INST.Ph5b1.F02							
C.	Title:	Course Plan P							4 / 24	
Copyright @2017.	AAS. All rights reserved	ł.								
					problems					
15CS653.5Apply game theory, decision analysis for decision support system to				8	Game	Problem	Slip	test	L4	
					Theory,Deci	solving			Analyze	
	construct decis	sion tree			sion					
					analysis.					

-

-

-

-

Total 40 Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

-

SNo	Application Area	СО	Level
1	Food and Agriculture Farmers apply linear programming techniques to their work. By determining what crops they should grow, the quantity of it and how to use it efficiently, farmers can increase their revenue.	CO1	L4
2	Applications in Engineering Engineers also use linear programming to help solve design and manufacturing problems. For example, in airfoil meshes, engineers seek aerodynamic shape optimization.		
	Transportation Optimization Transportation systems rely upon linear programming for cost and time efficiency. Bus and train routes must factor in scheduling, travel time and passengers.	CO3	L4
4	Efficient Manufacturing Manufacturing requires transforming raw materials into products that maximize company revenue.	CO4	L4
5	Linear programming is used to obtain optimal solutions for operations research. Using linear programming allows researchers to find the best, most economical solution to a problem within all of its limitations, or constraints.	CO5	L4
6	Widely used in business and economics, and is also utilized for some engineering problems Industries that use linear programming models include transportation, energy, telecommunications, and manufacturing		L4

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes		Program Outcomes											
#	COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO	PO9	PO1	PO1	PO1	Level
							6		8		0	1	2	
CO1	Formulate the LPP for the given	2	2	3	2	-	2	2	-	1			2	L4
	data													
CO2	Apply the Graphical and Simplex	2	2	3	2		1	2		2			2	L4
	method to solve the LPP, game.													

(Second	SKIT		Теа	achir	ng Pr	oces	S					Rev No.: 1.0			
	Doc Code:	INST.Ph5b1.F02								Date: 23-3-2020					
C.C.	Title:	Course Plan									Pag	Page: 5 / 24			
Copyright @2017.	AAS. All rights reserved														
CO3	Select and techniques for	apply optimization various problems.	1	2	2	3		2	2		2			3	L4
CO4	Demonstrate s solving assig ransportation	skills in forming and Inment problems,T problems	2	3	3	1		1	2		2			2	L4
CO5	Apply game analysis for system to con	theory, decision decision support struct decision tree	1	2	2	2		1	2		2			2	L4
CSPC.	Average														
Note: Men	tion the mapp	ing strength as 1, 2,	or 3												

4. Mapping Justification

Map	ping	Justification				
со	PO	-	-			
CO1	PO1	The knowledge of mathematical principles will help the students to apply the same to formulate solutions for engineering problems.	L4			
CO1	PO2	Fundamental knowledge in complex analysis will help to analyze the engineering problems easily.	L4			
CO1	PO3		L4			
CO1	PO4		L4			
CO1	PO5	No content tool, no mapping				
CO1	PO6		L4			
CO1	PO7		L4			
CO1	PO8	No matching for ethical principles				
CO1	PO9	Student will develop individual knowledge to work in a team or individually .				
CO1	PO10	No mapping.				
CO1	PO11	No mapping.				
CO1	PO12		L4			
CO2	PO1	The knowledge of simplex and graphical method is required to find the solution of complex engineering problems	L4			
CO2	PO2		L4			
CO2	PO3		L4			
CO2	PO4		L4			
CO2	PO5	No content tool, no mapping				
CO2	PO6	Complex analysis may address various society related problems.	L4			
CO2	PO7		L3			
CO2	PO8	No matching for ethical principles				
CO2	PO9					
CO2	PO10	No mapping.				
CO2	PO11	No mapping.				
CO2	PO12	Study of graphical & simplex method is required if students want to start-up their companies.	L4			
CO3	PO1		L4			
CO3	PO2	Students can formulate the complex problem as linear programming model and obtain solution to optimize the result.	L4			
CO3	PO3	Design solutions for complex engineering problems like transportation & assignment	L3			
CO3	PO4	Students can formulate the complex problem as linear programming model ,can apply all methods obtain solution to give some conclusion.	L4			
CO3	PO4	No content tool, no mapping				
CO3	PO6	By understanding mathematical principles and LPP students can apply contextual knowledge to assess solution to complex	L4			

(Samera)	SKIT	Teaching Process Rev No.:		1.0		
	Doc Code:	INST.Ph5b1.F02	Date: 23-	3-2020		
	Title:	Course Plan	Page: 6 /	′ 24		
Copyright @2017. cA	AS. All rights reserved					
	DO -	engineering problems				
CO3	PO7	I horough understanding optimizing techniques they can k	now the	L3		
		environmental contexts.				
<u> </u>	P08	vo matching.				
CO3	P09	Student will develop individual knowledge to work in a tear	tudent witt develop individual knowledge to work in a team or			
		Individually as a decision analyst.				
<u> </u>	P010	No mapping.				
<u> </u>	PO11	ino mapping.				
CO3	P012	Study of optimizing techniques is required.		L3		
C04	PO1	Fundamental knowledge in complex analysis will help to ar	ialyze	L4		
	- DOa	the engineering problems very easily.		1.4		
C04	PO2	Students can formulate the complex problem as mathemat	ICal	L4		
		model and analyze the problem .				
	DOa	Design colutions for complex angine arise print and large using		1.4		
04	P03	transportation & assignment		L4		
		Indispondition & dssignment.	had thay	1.4		
04	P04	inforough understanding transportation & assignment met	nou they	L4		
CO4	DO 4	Can conduct investigation of complex problems can be sold	eu on .			
CO4	P04	Complex analysis may address various society related prob	lome	1.4		
<u> </u>	P00	Complex analysis may address various society related prob		L4		
04	P07	Inorough understanding transportation & assignment the	y Carr			
		arise in a range of fields	Jinnent			
CO4	DO8	No matching for othical principlos				
CO4	PO0	Student will develop individual knowledge to work in a team or				
004	FOg	individually				
<u> </u>	PO10	No mapping				
CO4	PO10	No mapping.				
CO4	PO12	Study of transportation & assignment is required if students	want to	10		
004	FOIZ	work in manufacturing business based companies	want to	∟3		
COF	PO1	The knowledge of game theory and decision analysis is reg	uired to	LA		
665	101	find the solution of complex engineering problems.		64		
C.O.5	PO2	Students can formulate the complex problem as game the)rv	LΛ		
	1.02	model and obtain solution.	,, y			
CO5	PO3	Design solutions for complex engineering problems using c	ame	4		
	. 05	theory solution often used in political, economic, and militar	v			
		planning.	,			
CO5	PO4	Thorough understanding game theory method they can co	nduct	L4		
		investigation of complex problems can be solved for exam	ple			
		much progress has been made in applying game theoretic	models			
		to a wide range of economic problems.				
CO5	PO5	No content tool, no mapping				
CO5	PO6	It has hardly been used to tackle safety management in mu	lti-plant	L3		
		chemical industrial settings.				
CO5	PO7	Thorough understanding game theory they can know the		L4		
		environmental contexts. Problems related to game theory a	rise in a			
		range of fields,				
CO5	PO8	No matching for ethical principles				
CO5	PO9	Student will develop individual knowledge to work in a tear	n or			
		individually .				
CO5	PO10	No mapping.				
CO5	PO11	No mapping.				
CO5	PO12	Study of game theory is required if students want to progre	ss in	L3		
		analytics field.				

Note: Write justification for each CO-PO mapping.

(Second Second	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
C C C	Title:	Course Plan	Page: 7 / 24
Copyright @2017. cA	AS. All rights reserved		

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Title Teaching No. of question in Exam							CO	Levels
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Introduction, Linear Programming: Introduction: The origin, nature and impact of OR; Defining the problem and gathering data; Formulating a mathematical model; Deriving solutions from the model; Testing the model; Preparing to apply the model; Implementation . Introduction to Linear Programming Problem (LPP):Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples.	8	2			1	1	2	CO1, CO2	L2,L4
2	Simplex Method -1:The essence of	8	-	2	-	1	1	2	C02	L4
	the simplex method; Setting up the									
	simplex method; Types of									
	variables, Algebra of the simplex									

10	SKIT Teaching Process Rev No.: 1.0)					
		Doc Code:	INST.Ph5b1.Fo2							Dat	te: 23-3-:	2020
		Title:	Course Plan							Pag	ge: 8 / 2	4
	method;	the simp	lex method in									
	tabular	breaking in the										
	simplex	method, I	Big M method,									
	Two pha	se method.										
3	Simplex -The es Primal d of prima versa. Th	Method –2 ssence of ual relation I to dual pr ne dual simp	: Duality Theory duality theory, ship, conversion oblem and vice olex method.	8	-	-	2	1	1	2	CO3	L4
4	Transpor Problem problem Solution CornerRi Method, Method, Modified (MODI). T Hungaria assignm and M transpor problem	rtation an Is: The (IBFS) b Ule method Vogel's Optimal Distribu The Assignr an algorit ent proble laximization tation an Is.	d Assignment transportation Basic Feasible y North West d, MatrixMinima Approximation solution by ution Method nent problem; A thm for the m. Minimization varieties in d assignment	8	2	-	-	1	1	2	CO4	L4
5	Game T formulat sum gar and mi simple example strategie procedu nature Search, Genetic	heory: Gar ion of two mes;saddle inimax pri games- e; Games es; Graph re. Metah of Metah Simulate Algorithms.	ne Theory: The persons, zero point, maximin nciple, Solving a prototype with mixed nical solution neuristics: The euristics, Tabu ed Annealing,	8	-	2	2	1	1	2	CO5	L4
-		Tota	.l	40	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

E velve tieve	W/ - i Marylan	00	L av sala
Evaluation	Weightage in Marks	00	Levels
CIA Exam – 1	15	CO1,CO4	L2,L4,L3,L4
CIA Exam – 2	15	CO2, CO5	L4,L4,L3,L4
CIA Exam – 3	15	CO3, CO5	L3,L2,L3
Assignment - 1	05	CO1,CO4	L2,L4,L3,L4
Assignment - 2	05	CO2, CO5	L4,L4,L3,L4
Assignment - 3	05	CO3, CO5	L3,L2,L3
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –		CO1 to Co5	L2, L3, L4

(And the second	SKIT	Teach	ning Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02		Date: 23-3-2020
	Title:	Course Plan		Page: 9 / 24
Copyright @2017. c	AAS. All rights reserved			
			1	1

_

Slip test

Final CIA Marks

Note : Blooms Level in last column shall match with A.2 above.

20

D1. TEACHING PLAN - 1

Module - 1

Title:	ntroduction to the concept of automata theory Finite state machine.	Appr	16 Hrs
		Time:	
	Course Outcomes		Pleams
d	The student should be able to:	-	Lovel
-	Formulate the LDD for the given date	-	Level
1	Formulate the LPP for the given data	<u>CO1</u>	L4
h	Courses Cohodula		
	Course Scriedule	-	-
	Module Content Covered		Level
1	Introduction, Linear Programming: Introduction: The origin, nature and	C01	L2
	impact of OR, Defining the problem and gathering data, Formulating a		
	mathematical model, Deriving solutions from the model, resting the		
2	Introduction to Linear Drogramming Droblem (LDD): Drototy no overmole	CO1	
2	Introduction to Linear Programming Problem (LPP). Prototype example		L3
3	Introduction to Linear Programming Problem (LPP). Prototype example		L3
4	Assumptions of LPP, Formulation of LPP.		L4
5	Assumptions of LPP, Formulation of LPP.		L4
6	Formulation of LPP.	CO1	L4
7	Formulation of LPP.	CO1	L4
8	Graphical method various examples.	CO1	L4
9	Graphical method various examples.	ļ	
10	Graphical method various examples.	ļ	
C	Application Areas	CO	Level
1	Food and Agriculture	CO1	L2
	Farmers apply linear programming techniques to their work. By		
	determining what crops they should grow, the quantity of it and how to		
	use it efficiently, farmers can increase their revenue.		
2	Among all the mathematical optimization techniques, linear programming	CO1	L4
	is perhaps the most used and best understood by the business and		
	industrial community, healthcare,Entertainment,finance etc.		
d	Review Questions	_	-
1	Discuss the scope of Operations Research.	CO1	L2
2	What is operation research? Explain origin and the six phases of operation	CO1	L2
	research.		
3	A retail store stocks two types of shirts A and B. These are packed in	CO1	L2
	attractive cardboard boxes. During a week the store can sell a maximum		
	of 400 shirts of type A and a maximum of 300 shirts of type B. The storage		
	capacity, however, is limited to a maximum of 600 of both types		
	combined. Type A shirt fetches a profit of Rs. 2/- per unit and type B a		
	profit of Rs. 5/- per unit. How many of each type the store should stock		
	per week to maximize the total profit? Formulate a mathematical model		
	of the problem.		
4	Old hens can be bought at Rs. 50/- each but young ones cost Rs. 100/-	CO1	L2
	each. The old hens lay 3 eggs/week and young hens 5 eggs/week. Each		
	egg costs Rs. 2/ A hen costs Rs. 5/- per week to fee. If a person has only		
1	IRS. 2000/- to spend for hens, formulate the problem to decide how many	í I	

IS

-

6 Section Con	SKIT	Teaching Process	Rev No.: 1.0						
(s	Doc Code:	INST.Ph5b1.F02	Date: 2	3-3-2020					
Certa and a second	Title:	Course Plan	Page: 1	.0 / 24					
Сорупупт ©201	of each kind of	hen should he buy? Assume that he cannot house more							
	than 40 hens.	nen should ne buy . Assume that he cannot house more							
5	A computer cor	npany manufactures laptops & desktops that fetches profit	CO1	L4					
	of Rs. 700/- & 500/- unit respectively. Each unit of laptop takes 4 hours of assembly time & 2 hours of testing time while each unit of desktop								
	requires 3 hours	s of assembly time & 1 hour for testing. In a given month the							
	total number of	hours available for assembly is 210 hours & for inspection							
	is 90 hours. Formulate the problem as LPP in such a way that the total								
6	A toy company	manufactures two types of dolls, a basic version-doll A and	CO1	L4					
	a deluxe version	n- doll B. Each doll of type B takes twice as long to							
	produce as one	of type A and the company would have time to make							
	maximum of 20	00 dolls per day. The supply of plastic is sufficient to							
	produce 1500 d	oils per dayl Both A & B combined). The deluxe version							
	company make	s a profit of Rs. 10/- & Rs. 18/- per doll on doll A & B							
	respectively, the	en how many of each doll should be produced per day in							
	order to maximi	ize the total profit. Formulate the problem as LPP.							
7	The standard w	eight of a special purpose brick is 5Kg and it contains two	CO1	L4					
	Ingredients B1 &	& B2. B1 cost Rs. 5/- per kg & B2 costs Rs. 8/- per kg.							
	of B1 & a minim	um of 2 kg of B2, since the demand for the product is likely.							
	to be related to	the price of the brick. Formulate the above problem as LP							
	model.								
8	A marketing ma	anager wishes to allocate his annual advertising budget of	CO1	L2					
	Rs. 20,000 in tw	ro media group M & N. The unit cost of the message in the							
	media 'M' is Rs.	200 & 'N' is Rs. 300. The media M is monthly magazine &							
	mot more than t messages shou	ild appear in the media N. The expected effective audience							
	per unit messad	the for media M is 4.000 & for N is 5.000. Formulate the							
	problem as Line	ear Programming problem.							
	<u> </u>								
e	Experiences		-	-					
2			COI	L2					
3									
4			CO1	L3					
5									

Module – 4

Title:	Transportation and Assignment Problems	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-		-	Level
1	Demonstrate skills in forming and solving assignment problems,T	CO4	L4
	ransportation problems		
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	The transportation problem	CO4	L2
12	Initial Basic Feasible Solution (IBFS) by North West CornerRule method,	CO4	L2
	MatrixMinima Method, Vogel's Approximation Method.		
13	Initial Basic Feasible Solution (IBFS) by North West CornerRule method,	CO4	L3
	MatrixMinima Method, Vogel's Approximation Method.		

Comun o		SK	IT				Teac	hing F	Proc	ess	5			Rev No.:	1.0
(s))) [)oc C	Code: II	le: INST.Ph5b1.Fo2					Date: 23-	3-2020					
		Titl	le: C	Course Plan							Page: 11	/ 24			
	Initia	al Ra	sic Feas	sible S	olution	(IBES) by N	Jorth	W/e	st (CornerR	ile meth	bod	COA	13
	Matr	ixMir	nima Me	thod, \	/ogel's	Appro	oximat	tion N	1eth	od.				004	-5
15	Optii	mal s	olution	by Moo	dified D	istribu	ution N	Netho	d (N	40[))			CO4	L4
16	The Assignment problem; A Hungarian algorithm for the assign											assignm	ent	CO4	L2
	prob	lem									<u> </u>				1
17	Ine	ASSI	gnment	probl	em; A	Hung	garian	algo	rith	m	for the	assignm	ient	CO4	L4
18	Minir	nizat	ion and	Maxin	nizatior	ı varie	eties ir	n tran	spo	rtat	ion and	assignm	ent	CO4	L3
19	prob Minir	lems nizat	s. ion and	Maxin	nizatior	ı varie	ties ir	n tran	spo	rtat	ion and	assignm	ent	CO4	L4
	prob	lems	<u>.</u>			<u> </u>									
20	Minii prob	nizat lems	ion and 5.	Maxin	nization	i varie	eties ir	n tran	spo	rtat	ion and	assignm	ient	CO4	L4
	Ann	icati	on Area	c										00	l evel
1	Dem	onst	rate skil	ls in foi	rmina a	ind so	lvina	assia	nme	ent	problem	IS.		CO4	L3
	Tran	sport	tation pr	oblem	S.										_0
d	Revi	ew G	uestion	IS										-	-
1	Find	initia	l Basic F	easibl	e solut	ion fo	r the f	ollow	ring	T.P	. Using a	Ill metho	ds .	CO4	L3
				1	2		3	Sup	pl	1					
				_				У							
			1	5	1		7	10		-					
			2	6	4		о -	80		-					
			<u> </u>	<u> </u>	2		5 50	15		-					
			d	' /5	20	;	50								
2	Defir	ne de	egenera	cv in ⁻	T.P .Fin	d opt	imal s	soluti	on f	or	the follo	wing T.	Ρ&	CO4	L4
	form	ulate	e as a ma	athema	atical m	nethoo	d.					0			
					1				-			<u> </u>	,		
				1	2	3	4		5		6	Suppl			
		1		0	12		6		0		10	<u>y</u>			
		2		7	3	7	7	,	5		5	<u> </u>			
		3		6	5	9	1	1	3		11	2			
		4		6	8	11	2		2		10	9			
		D	emand	4	4	6	2		4		2				
3	The	proc	luction	capaci	ties of	the	factor	ies a	re 1	000	0,700,90	o units	per	CO4	L4
	mon	th .th	ne requ	iremer	nts fror	n the	deal	ers a	re (900 trar	,800,50	0 & 400	250		
	Rs 8	niils p 7 &	o at	throo	facto	ris the	foll	owing	ing n t	urar abli	sportati	unit	are		
	1.3.0,	trans	portatio	n cost	s from	the fa	actorie	es to	the	de	alers.de	termine	the		
	optir	num	solutior	n to ma	iximize	the to	oatl re	turns.							
			_	1	2	3	4								
				2	2	2	4								
			C.	3	<u>5</u> २	2	1								
4	A pro	oduc	t is prod	luced b	by 4 fac	tories	f1f,2,f	[:] 3 &f∠	1.Th	neir	unit pro	duction		CO4	L4
	cost	s are	Rs. 2,3,1	.,&5.uni	t costs	of tra	nspor	tation	, ,p	rod	luction c	apacity 8	S.		
	requ	irem	ents are	given	below	find o	ptimu	m sol	lutic	on fo	or the gi	ven T.P t	0		
	mon	nimiz	e the cc	ost.	6	<u> </u>	C								
				E 1	51	52	6	54							
				F2	10	8	7	5	-+						
L							1 1								

Some Con	SKIT				Teach	ning Pro	cess	Rev No.:	1.0
200	Doc Code:	INST.Ph	5b1.F0	2				Date: 23-	-3-2020
C C	Title:	Course	Plan					Page: 12	/ 24
Copyright @201,	r. cAAS. All rights reserved	l							
		F3	13	3	9	12			
		F4	4	6	8	3			
5	Explain va	arious st	eps inv	olved	in Hur	ngarian	algorithm with example.	CO4	L4
е	Experiences							-	-
1								CO1	L2
2									
3									
4								CO	L3
5									

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code:	ode: 15CS653 Sem: VI Marks: 30 Time:					75 minu	tes				
Cour	rse:	Operations	Researc	h		1	I			1		
-	-	Note: Answ	ver any 3	quest	ions, ead	ch carry	equal m	arks.		Mark	s CO	Level
1	а	What is operation research? Explain origin and the six phases c operation research.									CO1	L1,L4
	b	A farmer sq.m.area.E 40 sq.m of Q tree is 15 is also estir P trees sh 17/8.The re much as fro Use mathe	000 5 ast l of e.e.it r of han as	CO1	L4							
	С	Use graphi	cal meth	od to s	olve the	the abo	ve LPP p	roblem	۱.	5	CO1	L4
2	а	Use graph x1+x2>=6 ;x1	ical met +4x2>=12 ;	hod to x ₁ ,x ₂ >	solve =0	Min z	=3X ₁ +2X ₂	;	5X1+X2>=10	; 5	CO1	L4
	b	A firm manufactures two types of products A & B and sells them at a profit of Rs.2 on type A and Rs.3 on type B. Each product is processed or two machines G and H.Type A requires one minute of processing time or G and two minutes on H.Type B requires one minute on G and one minute on H.The machine G is available for not more than6hours 40 minutes while H is available for 10 hours during any working day.How many types of type A and type B should be produced so that the tota profit is maximized.								it a 5 on on 200 40 ow otal	CO1	
	С	Use graphi	cal meth	od to s	olve the	the abo	ve LPP p	roblem	۱.	5	CO1	L4
		• ·										
3	a	Find initial Basic Feasible solution for the following T.P. Using all methods								ods 5	CO4	L4
				1	2	3	Suppl y					
			1	5	1	7	10]				
			2	6	4	6	80]				
			3	3	2	5	15					
			Deman	75	20	50						

6	STREET, CON		SKIT					Teach	ing Pr	oces	S			Rev I	NO.: 1.0	
12	Deal	Doc Code: INST.Ph5b1.Fo2										Date	23-3-2	020		
C	2	1	Title:	Cou	rse Pla	an								Page	: 13 / 2	4
Сорупс		Z. CAAS. AL	rights reserved													
			d										_			
	b	Define	e degenei	racy	y in T.P .Find optimal solution for the following T.P &							10	CO4	L4		
		formu	late as a r	nath	emati	cal m	ethoc	1.		_						
				1		2	3	4		5	6	Suppl				
			4			10		6		~	10	У				
			2	$\frac{9}{7}$,	2	9	- 0		9 r	10	5				
			2	/		<u>3</u> r		/		5 2	5	0				
			3	6		5 0	9	- 11		<u>3</u>	10	2				
			4 Domano			0	6	2		<u>ک</u>	2	9				
<u> </u>			Deman	4	-	4	0	2		4	2					
		Tho n	raduction		apoitio	c of	tha f	actoric	c are	1000	700.00	o unito n			<u> </u>	14
		month per m o at th	n .the req omth.the	uiren per u ris th	nents unit re	from turn (the c exclu	dealers ding tr	s are s anspo	900,8 ortatio	00,500 on cost)	& 400 un are Rs.8,7	its ′&			
		the factor	ctories to	the i	deale	rs det	ermin	e the	optim	um s	olution	to maximi	ze			
		the to	atl returns	5.	acato	0.000	errini		openn		otation					
			Γ	-	1	2	3	4								
				A	2	2	2	4								
				В	3	5	3	2								
				С	4	3	2	1								
			_													
	b	A pro	duct is pr	oduc	ced b	y 4 fa	actorie	es f1f,2	2,f 3 &	f4 .Tł	neir unit	producti	on	10	CO4	L4
		costs	are Rs. 2	2,3,1,8	\$5.uni	cost	s of ti	ranspo	rtatior	n ,pro	oduction	n capacity	<u> </u>			
		requir	ements a	re gr	ven b	elow	nna c	ptimu	m soll	ltion	for the	given T.P	to			
		rnornii	mize the c	JOSL.		1	50	50	C 4							
					1 7	21	32	6	11	-						
					$\frac{1}{2}$		4 8	7		-						
					2 1	.0 2	2	/	12	-						
						-3 1	<u> </u>	8	3	_						
				<u> </u>	<u>- ^</u>	T	<u> </u>	<u> </u>	5							

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
C C C	Title:	Course Plan	Page: 14 / 24
Copyright @2017. cl	AS. All rights reserved		

				М	odel As	ssignme	nt Ques	stions				
Crs C	ode:	15CS65	3 Sem:	VI	M	1arks:	5	Tir	ne: 9	0 - 120	minute	S
Cours	se:	Operatio	ons Resear	rch								
Note: Each student to answer 2-3 assignments. Each assignment carries equal m										rk.		
SNo USN Assignment Description										Marks	СО	Level
1			A paper n	nill produc	es two	grades	of pape	er namely 2	X and Y.	5	CO1	L4
			Because	of raw ma	terial re	strictior	ıs, it car	nnot produ	ice more			
			than 400	tons of gra	ade X a	nd 300 l	ons of g	grade Y in	a week.			
			There are	160 produ	uction h	nours in	a week.	. It require	s 0.2 and			
			0.4 hours	to produc	e a ton	of prod	ucts X a	and Y resp	ectively			
			with corre	esponding	profits	of Rs. 20	00/-an	d Rs. 500,	/- per ton.			
			Formulate	e the abov	'e as a l	_PP to n	naximize	e profit an	d find the			
			optimum	product n	<u>1IX.</u>						001	
2			Use grap	nical metr	IOCI TO S	OLVE Ma	3X Z=3X1	.+4X2 ; 5X	1+4X2<=200	5	CO1	L4
			,	3X1+5X2<=1	.50 ,5x1	L+4XZ>=1	00 , 0XI 22-0	+4x2>=00				
2			The prod	luction ca	nacitios	$x_{1,x}$	factori	oc aro 10			CO1	
3			units nor	r month	the re	auirome	nts fro	es ale 100 m the d	loalors are	5	COI	L4
				500 & 4C	one re	s ner i	nomth	the ner i	unit return			
			(excludin	a transpo	ortation	cost)	are Rs	5.8.7 & C	at three	2		
			factoris.th	ne followi	na tab	le aive	s unit	transporta	ation costs			
			from the	factories	to the	e deale	ers.dete	rmine the	e optimum			
			solution t	o maximiz	e the to	oatl retu	rns.		I			
					1	2	3 4	ł				
				A	2	2	2 4	ł				
				В	3	5	3 2	2				
				С	4	3	2 1					
4			Exp	plain vario	us step	os involv	ved in l	Hungariar	n algorithm	n 5	CO4	L2
			WIt	h example). 		£	. 6 . 11			<u> </u>	
5			Find initia	al Basic Fe	easible	solution	for the	e iouowing	J T.P. USING	5	CO4	L4
			aumetrio	us.								
					1	2	2	Suppl	1			
					+							
				1	5	1	7	10				
				2	6	4	6	80				
				3	3	2	5	15	1			
				Deman	75	20	50		1			
				d	, 0							

D2. TEACHING PLAN - 2

Module – 5

Title:	Game Theory	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply game theory, decision analysis for decision support system to construct decision tree.	CO5	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
21	The formulation of two persons, zero sum games;saddle point	CO5	L2

Some To	SKIT	Rev No.: 1.0		
00	Doc Code:	Date: 23-	3-2020	
Concel	🖉 🛛 Title:	Course Plan	Page: 15	/ 24
Copyright @201	r7. c AAS. All rights reserved	d		
22	Game Theory:	Game Theory: The formulation of two persons, zero sum	CO5	L4
	games;saddle	point		
22	maximin and	minimax principle. Solving simple games, a prototype	COF	1.4
23		minimax principle, solving simple games a prototype	005	64
	example,			
24	maximin and	minimax principle, Solving simple games- a prototype	CO5	L4
	example;			
25	Games with mi	red strategies: Graphical solution procedure	COF	14
25		ted strategies, draphical solution procedure.	005	∟4
26	Games with mi	ked strategies; Graphical solution procedure.	CO5	L4
27	Graphical solut	ion procedure.	CO5	L2
28	Graphical solut	ion procedure.	CO5	L4
20	Metaheuristics	The nature of Metabeuristics Tabu Search Simulated	COF	Ι <i>Λ</i>
-9	Annealing Con	etic Algorithms	005	<u>-4</u>
	Anneating, der			
30	Metaheuristics:	The nature of Metaheuristics, Tabu Search, Simulated	CO5	L4
	Annealing, Gen	etic Algorithms.		
с	Application Ar	eas	со	Level
1	Problems relate	ed to game theory arise in a range of fields, for example,	CO5	L4
	healthcare, trar	nsportation and military planning.		
d	Review Questi	ons	-	-
	Define the follo	f matrix	005	L2
	e)two perso	n zero, sum game, f)strategy, g)minimax & maximin		
	principles h)a	Iominance principle		
2	Solve the follo	wing game by applying a) graphical method b)dominance	CO5	L4
	rule			
	a)	b)		
	<u> </u>			
	A1	3 -3 4 2 2 6		
	A2	-1 1 -3		
3	Two player A 8	B are playing a game of tossing a coin simultaneously	CO5	L3
	player A wins 1	unit of value when there are two heads , wins nothing		
	when there are	two tails and looses $\frac{1}{2}$ unit of value when there is one		
	nead and one t	all. Determine the pay-off matrix , the best strategies for value of the game		
			CO5	4
	In A Game Of N	latching coins with two players, suppose A wins one unit of		-7
	wins nothing	hen there are two tails & losses ¹ /2 unit of value when there		
	are one head &	one tail.		
	Determine the	payoff matrix, the best strategies for each player and the		
	value of the ga	me		
5	Explain briefly	he following a) tabu search b)genetic algorithm	CO5	L4
	c)simulated an	nealing technique.		
e	⊨xperiences		-	-
<u> </u>			CO_1	10
2			CO1	L2

(Comments	SKIT	Teaching Process	Rev No.:	1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-	-3-2020
CC D	Title:	Course Plan	Page: 16	/ 24
Copyright @2017	-CAAS. All rights reserved	l.		
4			CO3	L3
5				

Module – 2

Title:	Simplex Method	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the Graphical and Simplex method to solve the LPP, game.	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
31	The essence of the simplex method the simplex method in tabular form;	CO2	L2
32	The essence of the simplex method the simplex method in tabular form;	CO2	L3
33	Setting up the simplex method.	CO2	L3
34	Setting up the simplex method.	CO2	L4
35	Types of variables, Algebra of the simplex method;	CO2	L2
36	Types of variables, Algebra of the simplex method;	CO2	L2
37	Tie breaking in the simplex method.	CO2	L4
38	Tie breaking in the simplex method.	CO2	L4
39	Big M method,	CO2	L4
40	Two phase method.	CO2	L4
С	Application Areas	СО	Level
1	For example Although many problems in architecture, engineering, construction and urban and regional development can be modelled with linear programming.	CO2	L3
d	Review Questions	-	-
	Explain the steps involved in simplex method? Explain about special case in simplex method with example.	02	L3
2	Solve the following using simplex method.	CO2	L3
	Max p= 2x + y , x + 4y < = 24 , x - y <= - 3 , x + 2y <= 14 , 2x - y <= 8		
3	solve the following using Two Phase method	CO2	L2
	MAX Z = 5X1- 4X2 + 3X3 , 2X1 + X2 - 6X3 = 20 , 6X1 + 5X2 + 10X3 <= 76 , 8X1- 3X2+6X3<=50		
4	Write the procedure to solve LPP of Two Phase method.	CO2	L4
5	Solve the following using simplex method	CO2	L4
	Max z = 5X+8Y , 4X+6Y < = 24 , 2X+Y< =18 , 3X+9Y < = 36		
е	Experiences	-	-
1		CO1	L2
2			
3		• •	
4		CO3	L3

	(Second	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
	and a	Title:	Course Plan	Page: 17 / 24
1				

Copyright @2017. CAAS. All rights reserved.

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code	15CS653	Sem:	VI	١	Marks:	30		Time: 75	minute	S	
Cou	rse:	Operations	Research		·							
-	-	Note: Ansv	ver any 2 qu	uestion	s, each	n carry	equal r	narks.		Marks	СО	Level
1	а	Explain var	ious steps ir	nvolvec	l in Hur	ngarian	algorit	hm with	example.	5	CO2	L4
	b	Find the as profit.	signment o	f jobs t	o macl	hines tł	nat will	result ir	n the maximum	10	CO2	L4
				M1	M2	M3	M4	M5]			
			J1	6.2	7.8	*	10.1	8.2				
			J2	7.0	8.4	6.5	7.5	6.0				
			_J3	8.7	9.2	11.1	7.0	8.2				
			J4	*	6.4	8.7	7.7	8.0				
2	а	Define the	following	a)pure	strate	gy	b)mixe	d strate	gy c)saddle	5	CO2	L4
		point d)pa	iy-off matrix			.		、	o · ·			
		e)two pers	on zero su	ım gam	ne 1 Nainta	r)strateq	ЭУ	g)minii	max & maximin	ו		
		principles	n)qominar	ice prin	icipie							
	b	Solve the f	ollowing ga	me by	applyir	ng a) gr	aphical	metho	d b)dominance	\$ 5	CO5	L4
		rule	00	,	,	0 0						
		a)			b)							
		B1	B2 B'	3								
		AI 3	-3 4									
		A2 -1	1 -3									
3	а	Find the a	ssignment	of mer	n to jo	bs that	will m	ninimize	the total time	e 5	CO5	L3
		taken.			1							
				J1	J2 J3	3 J4	J <u>5</u>					
			A	2	$\frac{9}{2}$	7	1					
			В	0	8 / 6 /	0	1					
				4	$\frac{0}{2}$ $\frac{5}{7}$	3	1					
			F	5	2 /	5	1					
	b	Explain bri	efly the fo	llowing	<u>ງ ອ</u> ເ ລ)	tabu s	earch	b)aei	netic algorithm	5	COS	12
		c)simulated	d annealing	technic	jue.			2,90	istic algorithm		200	
					,							
4	а	Two playe	r A & B are	playing	g a ga	me of	tossing	a coin	simultaneously	′ 5	CO5	L3
		player A w	ins 1 unit c	of value	e wher	n there	are tw	o head	s ,wins nothing	I		
		when there	e are two ta	ails and	lloose	s ½ un	it of va	lue whe	en there is one	, ,		
		head and c	one tail. Det	ermine	the pa	ay-off n	natrix ,	the bes	st strategies for			
		eacn playe	r & value of	the gar	ne.							
	b	Solve the f	ollowing ga	me ala	nolv si	uitable	methor	d b)do	minance rule c	5	COS	
		apply grap	hical metho	d.							200	

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs Code:	15CS653	Sem:	VI	Marks:	5	Time:	75 minutes			
Course:	Operation	s Research	1							

(Sector	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
	Title:	Course Plan	Page: 18 / 24
	AC All vielate vegen upp		

	SALE OF		-	-	 	
(Copyright @2017. C	AAS. All rights reserved.				

Note:	Each student	to answer 2-;	3 assignmer	nts. Eac	h assig	gnment ca	arries equal mar	ſk.		
SNo	USN		Assig	nment	Desci	ription		Marks	СО	Level
1		Solve the fol	lowing using	g BIG-N	∕l metł	nod		5	CO5	L4
		Min z=2x1+9x	2+x3 ,x1+4x2	2+2X3>=	5,3x1	+x2+2x3>=	4.			
2		Solve the fol	lowing using	g Two I	Phase	method		5	CO5	L4
		Max z=5x1+8	x2 ,3x1+2x2>	-=3 , ×1·	+4x2>=	4 X1+X2<=	5.			
3		Solve the fol	lowing using	g Two I	Phase	method			CO5	L4
		Max z=2x1+x2+x3 ,4x1+6x2+3x3<=8 , 3x1-6x2-4x3<=1 , 2x1+3x								
		5×3>=4.								
4		Solve the fol	lowing gam	e by ap	oplying	g graphica	al rule	5	CO6	L4
		2	2		3		-1			
		4	3		2		6			
5		Solve the fol	lowing gam	e by ap	oplying	g graphica	al rule	5	CO7	L3
		2	-1	5		-2	6			
		-2	4	-3		1	0			

D3. TEACHING PLAN - 3

Module – 3

Title:	Simplex Method –2	Appr	10 Hrs
	Courses Outcomes	Time:	Disama
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Select and apply optimization techniques for various problems.	CO3	L2
	Course Schedule	-	-
Class No	Module Content Covered	00	Level
41	Duality Theory - The essence of duality theory,	003	L3
42	Duality Theory - The essence of duality theory,	CO3	L2
43	Primal dual relationship	CO3	L2
44	Primal dual relationship	CO3	L2
45	conversion of primal to dual problem and vice versa	CO3	L3
46	conversion of primal to dual problem and vice versa	CO3	L2
47	The dual simplex method.	CO3	L3
48	The dual simplex method with examples.	CO3	L4
49	The dual simplex method with examples.	CO3	L4
50	The dual simplex method with examples.	CO3	L4
С	Application Areas	СО	Level
1	Efficient Manufacturing	CO3	L4
	Manufacturing requires transforming raw materials into products that maximize company revenue.		
2	Linear programming is used to obtain optimal solutions for operations research. Using linear programming allows researchers to find the best, most economical solution to a problem within all of its limitations, or constraints.	CO3	L4
d	Review Questions	-	-
1	Explain the following (i)the essence of duality theory (ii) primal dual	CO3	L2

(Second and a second and a seco	SKIT	Teaching Process	Rev No.:	1.0			
	Doc Code:	INST.Ph5b1.F02	Date: 23-	-3-2020			
	Title:	Course Plan	Page: 19 / 24				
Сорундні ©201	7. cAAS. All rights reserved						
	rlationship						
2	Write the dual o	CO3	L2				
	MAX Z =2X1+3X	2+X3 , 4X1+3X2+X3 = 6 , X1+2X2+5X3 = 4.					
3	Write the dual (CO3	L3				
	>= 4 , 7X1-2X2-X	4,7X1-2X2-X3 <= 10					
	X1-2X2+5X3 >= 3	3 , 4X1+7X2-2X3 >= 2					
е	Experiences		-	-			
1			CO1	L2			
2							
3							
4			CO3	L3			
5							

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	15CS653	Sem:	VI	Marks:	30	Time: 7	75 minute	es	
Coui	rse:	Operation	s Research							
-	-	Note: Ans	wer any 2 q	uestions, ea	ach carry e	equal marks.		Marks	CO	Level
1	а	Explain th case in sin	e steps inv	volved in sir od with exan	mplex me nple.	thod? Explai	n about speci	al 5	Соз	L1
	b	Solve the	following us	sing simplex	method			10	Соз	L3
		Max z = 5X	(+8Y , 4X+6)	Y < = 24 , 2X+	Y< =18 , 3×	(+9Y < = 36				
2	a	Define the basic fea (v)unboun	e following Isible solut ded solutior	(i)feasible sc .ion (iv)non: 1.	olution (ii) -degenera	basic solutio Ite basic fe	n (iii)degenera easible solutio	te ⁵ on	Соз	L1
	b	Find all k variables & Max Z=3X1	basic solutio & feasible so 1+4X2 , X1+>	ons to the olutions at e <2 < = 450 , 2	problem each step 2X1+X2 < = (& mention k 600	basic, non-bas	ic ¹⁰	Co3	L3
										<u> </u>
3	а	solve the f	following us	ing Big-M n	nethod			6	Co3	L3
	b	solve the f	following us X1-4X2+3X3	ing 2-phase , 2X1+X2	method 2-6X3 = 20	, 6X1+5X2	+10X3 <= 76	, 9	C03	L3
		8X1-3X2+6	6X3 <= 50							
4	а	Explain th rlationship	e following	(i)the esser	nce of dua	ality theory	(ii) primal du	al 6	Co3	L1
	b	Write the 6X1+X2+3X X1-2X2+5X (ii) MAX Z	dual of (3 >= 4 , 7X1- (3 >= 3 , 4X1 =2X1+3X2+X3	(i)MIN Z 2X2-X3 <= 10 +7X2-2X3 >= } , 4X1+3X2+	= 3X1-2X2 2 X3 = 6 , X	+4X3 , 3X1 1+2X2+5X3 = 2	+5X2+4X3 >= 7 1.	. 9	Co3	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	15cs653	Sem:	VI	Marks:	5	Time:	75 minutes

	SKIT	Teaching Process	5	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02		Date: 23-3-2020
C C C	Title:	Course Plan		Page: 20 / 24
Copyright @2017. C	AAS. All rights reserved			
Courso	Operations De	search		

Course:	Operations Research

oours					
Note:	Each student	to answer 2-3 assignments. Each assignment carries equal ma	rk.		
SNo	USN	Assignment Description	Marks	со	Level
1		solve the following using Big-M_method MAX 7= 2X + Y , 3X+Y=3 , X+2Y<=3, 4X+3Y>=6	5	CO9	L2
2		solve the following using 2-phase method MAX Z = 5X1-4X2+3X3 , 2X1+X2-6X3 = 20 , 6X1+5X2+10X3 <= 76 , 8X1-3X2+6X3 <= 50	5	CO9	L2
3			5	CO9	L2
4		Explain the following (i)the essence of duality theory (ii primal dual rlationship) 5	CO10	L4
5		Write the dual of (i)MIN Z = 3X1-2X2+4X3, 3X1+5X2+4X3 >= 7 6X1+X2+3X3 >= 4, 7X1-2X2-X3 <= 10 X1-2X2+5X3 >= 3, 4X1+7X2-2X3 >= 2 (ii) MAX Z =2X1+3X2+X3, 4X1+3X2+X3 = 6, X1+2X2+5X3 = 4.	. 5	CO10	L4

F. EXAM PREPARATION

1. University Model Question Paper

Cour	rse:	Operations Research Month /	Year	May /	2019
Crs (Code:	15CS653 Sem: VI Marks: 80 Time:		180 m	inutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	CO	Level
1	а	What is operation research? Explain origin and the six phases of operation research.	2	CO1	L2
	b	A farmer has to plant two kinds of tree P and Q in a land 4000 sq.m.area.Each P terr requires at least 25 sq.m and Q tree requires at least 40 sq.m of land.the annual water requirement of P tree is 30 units nad of Q tree is 15 units per tree,while at most 3000 units of water is available.it is also estimated that the ratio of the number of Q trees to the number of P trees should not be less than 6/19 and should not be more than 17/8.The return per tree from P is expected to be one and half times as much as from Q tree. Use mathematical formulation to the LPP.	6	CO1	L4
	с	Use graphical method to solve the the above LPP problem.	8	CO1	L4
-	a	A person requires 10,12 and 12 units chemicals A,B,C respectively for his garden. One unit of liquid product contains 5,2 and 1 units of A,B and C respectively. One unit of dry product contains 1,2 and 4 units of A,B,C. If the liquid product sells for Rs. 3/- and the dry product sells for Rs. 2/-, how many of each should be purchased, in order to minimize the cost and meet the requirements.	2	CO1	L4
	b	A paper mill produces two grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X and 300 tons of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs. 200/- and Rs. 500/- per ton. Formulate the above as a LPP to maximize profit and find the optimum product mix.	6	CO1	L4
	С	Use graphical method to solve Min z=20x1+10x2 ; x1+2x2<=40; 3x1+x2>=30 ;4x1+3x2>=60 ; x1,x2>=0	8	CO1	L4
2	а	Explain the steps involved in simplex method? Explain about special case	4	C02	L4

6	SKIT Teaching Process						F	Rev No.: 1.0					
		Doc Code:	INST.Ph	15b1.F02						[Date: 2)20	
Co.		Title:	Course	Plan						F	Dage:	21 / 24	
Сорупд	πι ©2017. α	AAS. All rights reserved											
		in simp	olex met	hod with	examp	le.						00.	
	a	Solve the following using simplex method. Max p= 2x + y ,										CO2	L4
		x + 4v < = 24 , x - v <= - 3 , x + 2v <= 14 . 2x - v <= 8											
	С												L4
		solve the lollo	wing usi	ng iwo i	-nase m	ietnoa	l						
		MAX Z = 5X1 - 4	4X2 + 3X	3, 2X1	. + X2 - 6	6X3 = 2	20, 6>	<1 + 5X2 +	10X3 <= 7	6,			
		8X1-3X2+6X3<=50											
_	а	Define the fo	llowing	(i)solutio	on (ii)fea	asible	solutio	n (iii)ha	asic solut	ion	1	C:02	14
	ŭ	(iv)basic feasik	ole solu	tion (v)de	egenera	te bas	sic feas	ible feas	ible solut	ion	4	OOL	-4
		(vi)optimal ba	sic feas	ible solu	ution (vi	i)unbo	unded	solution	(viii)feasil	ole			
		region.											
	b	Solve the follo	wing us	ing BIG-N	A metho	od P					8	CO2	L4
	6	Max Z=2x+y ,3 Find all basic s	x+y=3 , x	+2y<=3,	4x+3y>=0	o probl	ome				4	CO_2	14
	C	Max z=x1+3x2+	3x3 . x1+	2X2+3X3=	4 .2x1+′	3x2+5x	3=7				4	002	∟4
			<u> </u>			<u> </u>	<u> </u>						
3	а	Explain the fo	llowing	(i)the es	sence c	of dua	lity the	ory (ii)	primal d	ual	4	CO3	L4
		relationship	<u> </u>									001	
	b	Write the dual $MAX = 2X_{1+2}$. 0† Va+Va	1/1+2/2	+¥2 - 6	V1+2	¥2+∈¥2	- 1			8	CO3	L4
	C	Write the dual	of MIN	$\frac{4}{1}$ $\frac{3}{2}$	-2X2+1>	(3 3)	<u>~~'5~3</u> (1+5X2+,	<u>- 4.</u> 1X3 >= 7	6X1+X2+3	Xa	Δ	CO3	11
	Ŭ	>= 4 , 7X1-2X2-	X3 <= 10	•				-//3////			-	000	
		X1-2X2+5X3 >=	3 , 4X1	+7X2-2X3	>= 2								
											-		
-	a	Briefly discuss	about s	ensitivity	analysi	S starts	4 . 0.0	< 20 x4	- 21/2 - 4 4 0		6	CO3	L4
	U	8 x2 >=0 by so	lvina its	∠= 0∧1 + dual prol	oxz, sui blem us	ina sin	nolex m	<=20, XI ' nethod	* 2X2 <=10	, X1	10	003	∟4
			i i i g i i c										
4	а	Find initia <u>l Bas</u>	ic Feasil	ole soluti	on for th	ne folla	owing T	.P. Using	all metho	ds	4	CO4	L4
			1	2	3	S	uppl						
		1				<u> </u>							
		2	6	1	6	8	0						
		3	3	2	5	1	5						
		Der	nan 75	5 20	50								
		d											
	b	Define degene	eracy in	T.P .Find	d optima	al solu	ition fo	r the foll	owing T.F	° &	6	CO4	L4
						1	5	6	Suppl	1			
			-					Ũ	y y				
		1	9	12	9	6	9	10	5				
		2	7	3	7	7	5	5	6				
		3	6	5	9	11	3	11	2				
		4 Demar		0	6	2	2	2	9	$\left \right $			
	С	The production	$\frac{14}{14}$	4 cities of	the fac	tories	are 10	00,700.9	00 units r	j Der	6	CO4	4
	-	month the re	quireme	nts from	the dea	alers a	are 900	,800,500	& 400 ur	nits	-		
		per momth.the	e per un	it return (excludi	ng trar	nsporta	tion cost	are Rs.8,	7 &			
		9 at three fact	oris.the	tollowing	g table g	lives u	nit tran	sportatio	n costs fro	om			
		the factories to	υ line de ns	ealers.det	ermine.	rue ob	Jurnum	Solution	io maxim	ı∠e			
				1 2	3	4							
			A	2 2	2	4							

SKIT		Teaching Process								Rev No.: 1.0							
	~~ ())	Doc C	Code:	INST.Ph5b1.Fo2									Date: 23-3-2020				
	-	Tit	le:	Cours	ırse Plan								Page: 22 / 24				
	nt ©2017. (AAS. All right	<u>s reserved</u>														
				В	3	5	3		2								
				С	4	3	2		1								
-	а	A produ	uct is p	produc	ed by	4 fa	actori	es f:	1f,2,1	f 3 &f	4 .Th	neir u	ınit p	roduction	4	CO4	L4
		costs	are	Rs.	2,3,1	&5.u	init	CO	sts	of	tra	anspo	ortatio	on			
		proal,	JCTION	capac	ITY &	requ	lirem	ents	are	e give	en be	elow	πna	optimum			
		solution	IOF LITE	e given		1	<u>1111111</u> 52	∠e u ∣ so		SI.							
				F1	2	L	1	6		11	-						
				F2	10	<u>,</u>	8	7		5	-						
				F3	13	3	3	9		12	-						
				F4	. 4		6	8		3							
	b		Exp	lain va	rious s	steps	s invo	lvec	l in l	Hung	arian	algo	rithm	with	4	CO4	L4
							e	exam	nple								
	С	Fi	nd the	assigr	ment	of jo	bs to	ma	chir	ies th	at wi	ll res	ult in	the	8	CO4	L4
		m	iaximui	m prof	It.		10			N44							
				11	62		1VI2 7 Q	I^[\]	3	101		5					
				12	7.0		7.0 8.4	6	5	75	6	0					
				13	8.7		<u>9.4</u> 9.2	11	<u>,</u> 1	7.0	8.	2					
				J4	*		<u> </u>	8.7	7	7.7	8.	0					
											_						
5	а	Define t	he foll	owing	a)pi	ure s	strate	gy	k	o)mixe	ed st	rateg	ĴУ	c)saddle	6	CO5	L2
		point d	l)pay-o	ff matr	ix			-									
		e)tw	o pers	on zer	o sun	n gai	me	f)st	rate	egy	g)	minin	nax 8	maximin			
	h	principle	es n)	aomin	ance p	orinc	ipie	tho	foll	ovvinc		mok			6	COF	
	U D	Solve		B1	B2	B3	3	arar	hic	al me	j yai thod	he r	omina	nce rule	0	005	∟4
		b)	A1	3	-3	1	_	grap	/ 1100	b)							
			A 2	1	1	-					3	-2	4				
			A2	-1	L L	-3					-1	4	2				
											2	2	0				
	C	Two pla	ver A 8	Rare	nlavir	nd a	name	≏ ∩f '	toss	ina a	coin	simu	Iltane		4	COF	14
		plaver A	wins 1	L unit o	fvalue	e wh	ien th	nere	are	two	hea	ds .w	ins no	othing	4	005	∟4
		when th	ere are	e two t	ails an	d lo	oses	¹∕₂ ur	nit o	f valu	e wh	nen tr	nere i	sone			
		head an	d one	tail. De	termir	ne th	ie pay	y-off	ma	itrix ,	the b	oest s	trate	gies for			
		each pla	ayer &	value (of the	gam	e.										
-	а	In A Car	mo Of	Match	ina co	inc y	vith t		مام	iore e	uppo		ving	ono unit	6	CO5	L3
		of value	when	there :	are tw	n he	ads	wo j	Jiay	eis, s	uppu	JSE P	N WILLS				
		wins no	thina	when	there	are	two	tails	8	losse	$5\frac{1}{2}$	unit (of va	ue when			
		there ar	e one l	nead &	one t	ail .											
		Determ	nine the	e payo	ff mat	rix, tl	he be	est s	trate	egies	for e	each	playe	r and the			
		value of	the ga	ame													
	b	Explain	briefly	the fol	lowing	ga)	tabu	l sea	rch	b)ge	enetio	c algo	orithn	ו	6	CO5	L4
		CISIMULA Solvo th	ateu an	wing	y lech	niqu War	ie. Dolvir		h	nanco	rulo				Δ	$C \cap r$	1
	C			wing g		∍y al	pryn	iy u			o				4	005	∟4
		4			5						0						
		6			4						6						
		4 2 4															

A A	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
	Title:	Course Plan	Page: 23 / 24

2. SEE Important Questions

Course:		Operations Research Month /								/ Year	May /	2018	
Crs C	Code:	15CS65S	iem:	6		Mark	S:	80		Time:		180 m	inutes
	Nete	3							-1				1
Mo	Ono	Answer at	I FIVE IUII C	questio	ons. All	quesu	ons c	arry equ	at mai	KS.	- Marks	-	Vear
dul	GHU.												Tear
1	1	What are	the differer	nt pha	ses of C	DR stuc	dv.Ex	olain brie	efl∨.		6	CO1	2017
	2	Define the following:a)unbounded solution b)slack variable									5	CO1	2017
		c)Feasible region											
	3	Solve by g 3x1 + x2>=	graphical m 30, 4x1 + 3x	ethoc 2 >-60	l Min Z= 2,x1,x2>	20X1 + =0.	10X2	sub to: x	1 + 2X2	2 <=40,	5	CO1	2016
	4	Explain th	e 6 basic a	ssump	otions o	of Simp	lex m	ethod			6	CO1	2016
	5	Write a br sir	ief note on nplex emth	unbo 10d.	unded	solutio	n anc	l infeasib	ole sol	ution of	8	CO1	2007
2	1	Define sla	ck variable	, surpl	lus varia	able					4	CO2	2015
	2	Solve by b	oia M meth	od:Ma	ax 7=2x1	+ 3X2 -	+ 10x3	2			6	CO2	2016
					×1 ×2 ×2		10/(2)					
	3	Usina Two	$2x_3=0, x_2=0$	thod	.x1,x2,x; 'Min 7 =	3>=0 ⊧7 5x1 –	· 3X2				10	CO2	2015
	5	Sub to :3x:	1 -X2 - X3>=	3, X1 -	- x2 + x3	}>=0	0,.2						
	4	Solve by S	Simplex me	thod	Max 7=	2x1 + 3	2x2 +x	3<=210			2	CO2	2014
								$2 \cdot - + \circ$					
		XI + X2 + 3X	3<=300,X1	+ 3x2 1	•x3<=30	U,XI,XZ	,x3>=(J					
3	1	Give the c	haracterist	ics of	dual pr	oblem					8	co3	2014
	2	Expalin th	e primal du	ial rela	ationshi	ip.					6	CO3	2014
	3	Explain th	e essence	of dua	ality the	ory					10	CO3	2010
	4	Write the	duals of Ma	ax Z =>	x1 + 2X						10	CO3	2009
4	1	Find the initial basic feasible solution using North-West corner method:									6	CO4	2011
			D1	D2		D3		D4	Re en	quirem t			
		F1	3	3		4		1	100	C			
		F2	4	2		4		2	125	5	-		
		F3	1	5		3		2	75	-	-		
		Dem and	120	80		75		- 2E	/3		-		
	2	Evolain th		thod		75		20			4	CO4	2011
	3	Use VAM	to find the	intial k	oasic fe	asible	soluti	ons			4	CO4	2011
	0	Factories	W1		W2		W3	-	Avail	bale			5
		F1	16		20		12		200				
		F2	14		8		18		160				
		F3	26		24		16		90				
		Required	180				170						

(and the second	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	INST.Ph5b1.F02	Date: 23-3-2020
C C C	Title:	Course Plan	Page: 24 / 24
Copyright @2017. cl	AS. All rights reserved	l.	

	4	Ex an	plain variou 1 example.	s steps inv	olved ir	n Hung	arian m	ethod	with	8	CO4	2012
	5	Solve the assignment problem:										2011
			P1	P2		P3		P4				
		T1	42	35		28		21				
		T2	30	25		20		15				
		Т3	30	25		20		15				
		Т4	24	20		16		12				
5	1	Explain strategie c)Two pe	:a)Minmax es erson zero si	and max um game.	min pri	nciple	b)Pure	and	mixed	6	CO5	2013
	2	Solve by c	oncept of domin	ance:						10	CO5	2013
		6	15	30	21	21						
		3	3	6	6	4						
		12	12	24	36	3						
	3	Solve the g	graphical method	1:						10	CO5	2015
			I	II		I	IV	V				
		I	2	-1	5	-	-2	6				
		11	-2	4	-3	1	1	0				
	4	Give an o	Give an outline of the Basic Simulated Annealing algorithm.									2015
	5	Explain k	oriefly 1)Gene	etic algorit	hm 2)Tal	ou sear	rch			6	CO5	2005

IS