Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B.E Information Science and Engineering				
Semester :	VIII				
Course Code:	15CS834				
Course Title:	System Modelling and Simulation				
Credit / L-T-P:	3/3-0-0				
Total Contact Hours:	40				
Course Plan Author:	Veena M Naik				

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIAPhone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	<u>5</u>
B. OBE PARAMETERS	<u>5</u>
1. Course Outcomes	5
2. Course Applications	6
3. Articulation Matrix	6
<u>4. Curricular Gap and Content</u>	6
C. COURSE ASSESSMENT	7
1. Course Coverage	<u>7</u>
2. Continuous Internal Assessment (CIA)	7
D1. TEACHING PLAN - 1	8
Module - 1	8
<u>Module – 2</u>	8
<u>E1. CIA EXAM – 1</u>	<u>9</u>
a. Model Question Paper - 1	<u>9</u>
b. Assignment -1	<u>10</u>
D2. TEACHING PLAN - 2	11
<u>Module – 3</u>	11
<u>Module – 4</u>	11
<u>E2. CIA EXAM – 2</u>	<u>12</u>
a. Model Question Paper - 2	<u>12</u>
<u>b. Assignment – 2</u>	<u>13</u>
D3. TEACHING PLAN - 3	14
<u>Module – 5</u>	<u>14</u>
<u>E3. CIA EXAM – 3</u>	<u>15</u>
a. Model Question Paper - 3	<u>15</u>
<u>b. Assignment – 3</u>	<u>15</u>
F. EXAM PREPARATION	<u>16</u>
1. University Model Question Paper	<u>16</u>
2. SEE Important Questions	<u>18</u>
Course Outcome Computation	<u>19</u>
Academic Year:	<u>19</u>
Odd / Even semester	19

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	IS
Semester:	8	Academic Year:	2019-2020
Course Title:	System Modeling and Simulation	Course Code:	15CS834
Credit / L-T-P:	3/ 3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	80 Marks
CIA Marks:	20 Marks	Assignment	1 / Module
Course Plan Author:	Veena M. Naik	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	60	SEE Target:	65

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
1	Introduction: When simulation is the appropriate tool and when it is not appropriate, Advantages and disadvantages of Simulation; Areas of application, Systems and system environment; Components of a system; Discrete and continuous systems, Model of a system; Types of Models, Discrete-Event System Simulation Simulation examples: Simulation of queuing systems. General Principles, Simulation Software: Concepts in Discrete-Event Simulation. The Event-Scheduling / Time-Advance Algorithm, Manual	10	Levets L4
2	Simulation Using Event Scheduling Statistical Models in Simulation :Review of terminology and concepts, Useful statistical models, Discrete distributions. Continuous distributions, Poisson process, Empirical distributions. Queuing Models: Characteristics of queuing systems, Queuing notation, Long-run measures of performance of queuing systems, Long-run measures of performance of queuing systems cont,Steady-state behavior of M/G/1 queue, Networks of queues.	10	L4
3	Random-Number Generation: Properties of random numbers; Generation of pseudo-random numbers, Techniques for generating random numbers, Tests for Random Numbers, Random-Variate Generation: ,Inverse transform technique Acceptance-Rejection technique.	10	L4
4	Input Modeling: Data Collection; Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, Fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models. Estimation of Absolute Performance: Types of simulations with respect to output analysis ,Stochastic nature of output data, Measures of performance and their estimation, Contd	10	L4
5	Measures of performance and their estimation, Output analysis for terminating simulations Continued,Output analysis for steady-state simulations. Verification, Calibration And Validation: Optimization: Model building, verification and validation, Verification of simulation models, Verification of simulation models, Calibration and validation of models, Optimization via Simulation	10	L4
-	Total	50	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-	Availabl	In Lib/ in dept
5	Event System Simulation, 5 th Edition, Pearson Education, 2010.	e	
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	Lawrence M. Leemis, Stephen K. Park: Discrete – Event Simulation: A	Availabl	Not Available
5	First Course, Pedrson Education, 2000.		la lib
3,4	McGraw- Hill 2007		
С	Concept Videos or Simulation for Understanding	_	
C1	Discrete-Event System Simulation	_	_
	https://www.voutube.com/watch?v=21W/QB0E-6-M		
C ₂	Event-Scheduling		
	https://www.voutube.com/watch?v=iX2QCDiWgWI		
C3	Statistics on Objects		
	https://www.youtube.com/watch?v=Fu12LgDDV-0		
C4	Predictive Modeling		
	https://www.youtube.com/watch?v=hK5EJRfmpb0		
C5	Random numbers		
	https://www.youtube.com/watch?v=gVwiXU7WPvQ		
C6	Random-Variate		
C7	<u>nttps://www.youtube.com/watcn?v=mpQi4il-OCi</u>		
C/	Predicting of objects https://www.voutube.com/watch?v-VdbylDvid1		
<u>C8</u>	Estimating accuracy on Hypothesis		
	https://www.voutube.com/watch?v=hNDlgAYRDvg		
Cg	Steady-state simulations		
	https://www.youtube.com/watch?v=-N-9sSgVTGk		
C10	Optimization		
	https://www.youtube.com/watch?v=rp6kJv8gvR8		
D	Software Tools for Design	-	-
1	MATLAB		
2	Simulink		
E	Recent Developments for Research	-	-
	http://www.site.uottawa.ca/~oren/pubs/D83_Future_of_MaS.pdf		
F	Others (Web. Video. Simulation. Notes etc.)	-	-
1	https://eduladder.com/viewnotes/1857/10IS82-SYSTEM-MODFLING-		
-	AND-SIMULATION-ssm-notes		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	15CS834	System Modeling & Simulation	constructive and virtual modeling and simulation of UAVs.	8	Seminar	L2
2	15CS834	System Modeling & Simulation	strong C++/C# and Matlab experience	8	Hands on Sessions	L4
3	15CS834	System Modeling & Simulation	able to create top level briefings using MS PowerPoint to support management and customer presentations on simulation experiment results	8	Hands on Sessions	L4
4	15CS834	System Modeling & Simulation	3D physics, embedded software and systems simulation	8	Seminar	L2
5	15CS834	System Modeling & Simulation	Validate and optimize product design, operations and service	8	Seminar and Hands on Sessions	L4

Students must have learnt the following Courses / Topics with described Content ...

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt Method	Level
		should be able to				
1	15CS834.1	Apply the concepts in discrete-event	10	Learning /	Q & A	L4
		simulation using time scheduling		class	(Oral)	
		algorithm.		discussion		
2	15CS834.2	Analyze the queuing models using	10	Learning /	Employ	L3
		queuing systems.		class	Problem	
				discussion	Set	
3	15CS834.3	Generate and test random numbers	10	Learning /	Test (Take	L4
		and random variants and apply them		class	Home)	
		to develop Simulation models.		discussion		
4	15CS834.4	Distinguish between modeling	10	Learning /	Test (Take	L4
		methods that are suitable for		class	Home)	
		discrete-event, and hybrid systems,		discussion		
		and apply these methods to simple				
		systems				
5	15CS834.5	Analyze validation and verification of	10	Learning /	Test (Take	L4
		simulation models using different		class	Home)	
		validation models for model building		discussion		
-	-	Total	50	-	-	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Used in manufacturing industry, military, airports, health care, super markets.	CO1	L4
2	Networking, Graph Theory, queuing techniques	CO2	L3
3	Computer programming, Testing of hypothesis, Statistics	CO3	L4
4	Military applications, Organizations	CO4	L4
5	Operations Research	CO5	L4

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes						-									
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	15CS834.1	Apply the concepts in discrete-	2.6	2.6	2.6	2.6	-	2.5	-	-	2.6	-	-	2.6	2	ſ		L4
		event simulation using time	5	5	5	5					5			5				
		scheduling algorithm.														ĺ		
2	15CS834.2	Analyze the queuing models	2.6	2.6	2.6	2.6	2.1	2.5	-	-	2.6	-	-	2.6		2		L3
		using queuing systems.	5	5	5	5	5				5			5		Í		
3	15CS834.3	Generate and test random	2.6	2.6	2.6	2.6	-	2.5	-	-	2.6	-	-	2.6				L4
		numbers and random variants	5	5	5	5					5			5				
		and apply them to develop														Í		
		Simulation models.														Í		
4	15CS834.4	Distinguish between modeling	2.6	2.6	2.6	2.6	-	2.5	-	-	2.6	-	-	2.6			2	L4
		methods that are suitable for	5	5	5	5					5			5		Í		
		discrete-event, and hybrid														Í		
		systems, and apply these														Í		
		methods to simple systems														Í		
5	15CS834.5	Analyze validation and	2.6	2.6	2.6	2.6	-	-	2.5	-	2.6	-	-	2.6			2	L4
		verification of simulation	5	5	5	5					5			5		Í		
		models using different														Í		
		validation models for model																
		building														Í		
-	15EE662.	Average	2.6	2.6	2.6	2.6	2.1	2.5	2.5	-	2.6	-	-	2.6	2	2	2	L3-
			5	5	5	5	5				5			5				L4
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lem	Ar	naly	sis;	3.L	Des	ign	/	Dev	velc	pm	ent	of	Sc	oluti	ons;
		4.Conduct Investigations of Comp	lex	Pro	bler	ns;	5.M	lode	ern	Τοο	l Us	age	e; 6.	The	e En	igini	eer	and
		Society; 7.Environment and S	usto	aina	bilit	y;	8.E	thic	S;	9.li	ndiv	vidu	al	an	d	Теа	mw	ork;
		10.Communication; 11.Project N	Man	age	eme	ent	ar	nd	Fir	nan	се;	12	₽.Lif€	e-lo	ng	Le	зarr	ing;
		S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Optimizing Automotive Manufacturing Processes with Discrete- Event Simulation	Seminar	2 nd week of May 2020	Concerned faculty	
2	Integrating Discrete-	Seminar	2 nd week of May	Concerned faculty	

	Event and Time-Based Models with Optimization for Resource Allocation		2020		
3	Modeling Control Logic and Event-Driven Behavior for Early Detection of Communication Latencies	Seminar	3 rd week of May 2020	Concerned faculty	
4	Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation	Seminar	3 rd week of May 2020	Concerned faculty	
5	Optimizing Automotive Manufacturing Processes with Discrete- Event Simulation	Seminar	4 th week of May 2020	Concerned faculty	

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.		No. o	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction	10	2	-	-	1	-	2	CO1	L4
2	Statistical Models in Simulation	10	2	-	-	1	-	2	CO2	L3
3	Random-Number Generation	10	-	2	-	1	-	2	CO3	L4
4	Input Modeling	10	-	2		1	-	2	CO4	L4
5	Estimation of Absolute	10	-	-	4	1	-	2	CO5	L4
	Performance									
-	Total	50	4	4	4	5	-	10	-	-

2. Continuous Internal Assessment (CIA)

Asse	Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.							
Mod	Evaluation	Weightage in	CO	Levels				
ules		Marks						
1, 2	CIA Exam – 1	15	CO1, CO2	L4.L3				
3, 4	CIA Exam – 2	15	CO3, CO4	L4				
5	CIA Exam – 3	15	CO5	L5				
1, 2	Assignment - 1	05	CO1, CO2	L4.L3				
3, 4	Assignment - 2	05	CO3, CO4	L4				
5	Assignment - 3	05	CO5	L5				
1, 2	Seminar - 1		-	-				
3, 4	Seminar - 2		-	-				
5	Seminar - 3		-	-				
1, 2	Quiz - 1		-	-				
3, 4	Quiz - 2		-	-				
5	Quiz - 3		-	-				
1 - 5	Other Activities – Mini Project	-						

-

Final CIA Marks

40

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
1	Apply the concepts in discrete-event simulation using time scheduling	CO2	L4
	algorithm.		
b	Course Schedule		-
Class No	Portion covered per hour	-	-
1	Introduction: When simulation is the appropriate tool and when it is not	CO1	L2
	appropriate, Advantages and disadvantages of Simulation; Areas of application	<u> </u>	
2	systems and system environment; Components of a system; Discrete and	CO1	L2
2	Model of a system: Types of Models	CO_1	
	Discrete-Event System Simulation Simulation examples: Simulation of queuing	CO1	
4	systems	001	
5	Examples on Simulation of gueuing systems.	CO1	L3
	General Principles, Simulation Software: Concepts in Discrete-Event		
0	Simulation.	CO1	L3
7	The Event-Scheduling / Time-Advance Algorithm	CO1	L2
8	Problems Using Event-Scheduling / Time-Advance Algorithm	CO1	L2
9	Manual simulation Using Event Scheduling	CO1	L2
10	Problems using Manual simulation	CO1	L2
d	Review Questions		
1	How can we offset the disadvantages of simulation?	CO1	L2
2	List the application areas/Industry domains of simulation?	CO1	L2
3	What is System and System Environment?	CO1	L1
4	Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the	CO1	L2
	system simulation context?		
5	Explain and give an example each of continuous and discrete system?	CO1	L3
6	What is Model and Component of the system?	<u>CO1</u>	L4
7	Explain Discrete-event System simulation and Steps in a Simulation Study.	CO1	L4
e	Experiences	_	
1			
2			

Title:	Statistical Models in Simulation	Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
1	Analyze the queuing models using queuing systems.	CO2	L3
b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
11	Statistical Models in Simulation : Review of terminology and concepts, Useful		L2
	statistical models		
12	Discrete distributions.		L3
13	Continuous distributions, Poisson process		L3

14	Empirical distributions		L3
15	Queuing Models: Characteristics of queuing systems		L3
16	Queuing notation		L3
17	Long-run measures of performance of queuing systems		L3
18	Long-run measures of performance of queuing systems cont		L3
19	Steady-state behavior of M/G/1 queue		L3
20	Networks of queues		L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Usage of Statistical models in Queuing systems for calculating different factors.	CO2	L3
2	Usage of Statistical models in Inventory and supply-chain systems for	CO2	L3
	calculating different factors.		
	5		
d	Review Questions	-	_
d 1	Review Questions How can we offset the disadvantages of simulation?	- CO2	- L2
d 1 2	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation?	- CO2 CO2	- L2 L4
d 1 2 3	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment?	- CO2 CO2 CO2	- L2 L4 L2
d 1 2 3 4	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the	- CO2 CO2 CO2 CO2	- L2 L4 L2 L3
d 1 2 3 4	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context?	- CO2 CO2 CO2 CO2	- L2 L4 L2 L3
d 1 2 3 4 5	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context? Explain and give an example each of continuous and discrete system?	- CO2 CO2 CO2 CO2 CO2	- L2 L4 L2 L3 L2
d 1 2 3 4 5 6	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context? Explain and give an example each of continuous and discrete system? What is Model and Component of the system?	- CO2 CO2 CO2 CO2 CO2 CO2 CO2	- L2 L4 L2 L3 L2 L2 L4
d 1 2 3 4 5 6 7	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context? Explain and give an example each of continuous and discrete system? What is Model and Component of the system? Explain Discrete-event System simulation and Steps in a Simulation Study.	- CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	- L2 L4 L2 L3 L2 L2 L2 L2 L4 L2
d 1 2 3 4 5 6 7 e	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context? Explain and give an example each of continuous and discrete system? What is Model and Component of the system? Explain Discrete-event System simulation and Steps in a Simulation Study. Experiences	- CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	- L2 L4 L2 L3 L2 L2 L4 L2 L4 L2
d 1 2 3 4 5 6 7 e 1	Review Questions How can we offset the disadvantages of simulation? List the application areas/Industry domains of simulation? What is System and System Environment? Explain the terms: (a) entity (b) attribute (c) activity (d) event & (e) state in the system simulation context? Explain and give an example each of continuous and discrete system? What is Model and Component of the system? Explain Discrete-event System simulation and Steps in a Simulation Study. Experiences	- CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	- L2 L4 L2 L3 L2 L2 L4 L2 L4 L2 -

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	e:	15CS834	Sem:	VIII	Marks:	20	Time: 60) Minute	es	
Coui	rse:	System Mo	deling an	d Simulatio	n					
-	-	Note: Ansv	wer all qu	estions, eac	h carry equa	l marks.	Module : 1, 2	Marks	СО	Level
1	а	Define the i) Discrete	following System ii	terms used) Continuou	in simulation s System iii) S	: Stochasti	ic System	7	CO1	L1
	b	iv) Determi What is Si study.	mulation?	tem v) Entity Explain the	vi) Attribute. flowchart of	steps in	volved in simulation	8	CO1	L2
					OR					
2	a	Name the systems: ii	entities, al) Rapid Ra	ttributes, ac il ii) Product	tivities, events ion iii) Comm	s and sta unication	te variables for the is iv) Inventory	8	CO1	L2
	b	List any for appropriat	ur situation e tool.	ns when sim	ulation is the	appropr	iate tool and not	7	CO1	L2
					OR					
3	а	Describe c system ca events.	lueuing sy pacity, qu	stem with re eue disciplir	espect to arriv ne, flow diagr	val and s ams of a	ervice mechanisms Irrival and departure	, 7	CO2	L3
	b	Consider the at this chere vary from a simulation customer i Service Tir RD for arrive RD for serve Assume fir	he grocen ckout cou t to 6 mins table for 2 n queue, i ne : 1,2,3 /al: 91,72,1 /ice:84,10, st custom	y store with nter at rand with proba to customer dle time of 4.5.6 5.94.30.92.7 74.53.17.79.9 er arrives	one checkout om from 1 to 2 bility as show 's and find our server and av Probability 2 5,23,30 1,67,89,38. at t =0	counter 10 mins a n below. t average erage se 0.05,0.10	Customer arrives apart. Service time Prepare the waiting time of rvice time. ,0.20,0.30,0.25,0.10	8	CO2	L4

		OR			
4	а	Explain different characteristics of queuing system	5	CO2	L2
	b	What is Poison process? With example explain the properties of poison	10	CO2	L3
		process.			

b. Assignment -1

				Mo	odel As	signm	ient Qi	Jesti	ons					
Crs Code:	15CS834	4 Sem:		VIII	М	larks:	5		Tir	ne:				
Course:	System	Modelin	g and S	Simula	tion									
	1													1
SNo				Assig	nment	Descr	iption				M	1arks	CO	Level
1	Define Si	mulatio	n. Expla	ain wh	en simi	ulatior	ı is an	appr	opriate	tool .		5	CO1	L2
2	Name th system s	e entitie hown be	s, attrik elow:	outes, a. L	activiti€ ibrarv b	es, eve 5. Banl	ents ar ≺	nd sta	ate varia	ble for		5	CO1	L2
3	With a ne	eat flow	chart e	explain	in deta	ail abc	out the	step	s in sim	ulation		5	CO1	L1
4	, Discuss t	he type	s of mo	odels i	n a syst	tem.						5	CO1	L2
5	Define th i)system iv)Endog	ie follow ii)entity enous e	ring iii)activ vent v)	ity Exoge	nous e	vent v	i)State	ò				5	CO1	L3
6	A Compa There are weighing truck trav loading t Calculate utilization Stopping	any uses e two loa y scale to vels to th ime, we Load Weig Trave e the tot n. Assum y event t	6 truc aders, t o be we he indu ighing ing tim h time l time al busy he 5 tru ime TE	ks to h to loac eighte istry ai time a e time a time a cks ar acks ar	naul ma d each t d. The o nd retu nd trav 10 5 5 12 12 12 10 10 4 of both re at the in.	Ingane truck. queue rns to el. 10 1 2 16 1 2 16 1 0 40 8 loade e load	After I After I discip the lo 5 10 1 2 16 30 ers, the er and	e fron loadii ader 0 e scal	n ng, a tru is FIFO. queue. le, avera is at the	koli ick mov When i The dist ge load scale, a	ar to i es to t is we ribution er and at time	n g ust the eighte on of d scal e "o".	ryCO1 ed, a the .e	L4
7	The time fraction o lifetime?	to failur of bulbs ii. What	re of a are exp is the l	light b becteo Mediar	ulb is w d to last n lifetim	veibull t longe ne of a	. distrik er thar 1 light l	outeo n mea bulb?	d with V an ?	=1.8·10 ³ h	ours.	i.ðWh	atCO1	L4
8	Using ev snapsho with inte	ent sche t for the r arrival a	eduling followi and sei	y/time ng. Cc rvice ti	advano onsider ime del	ce alg a sing tails as	orithm le serv s show	n gen ver qı vn be	erate th ueuing s low.	e syster system	n	5	CO1	L3
	IAT	3	2	6	2	4	5							
	ST	2	5	5	8	4	5]						
	Stop sim	ulation	when s	imulat	ion clo	ck rea	ches 2	20.						
9	List the s	teady st	ate pa	ramete	ers of №	<u>/ M 1 c</u>	queue	11.4				5	CO2	L2
10	Explain t	he queu	ing no	tation	of the f	orm A	B C N	K				5	CO2	L2

D2. TEACHING PLAN - 2

Title:	Random-Number Generation	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
15CS834	Copyright ©2017, cAAS. All righ	nts reserv	ved.

1	Generate and test random numbers and apply them to develop Simulation	CO3	L4
	models.		
h	Course Schodule		
	Course Schedule Dertion covered per hour		_
1	Random-Number Generation: Properties of random numbers	- CO3	-
2	Generation of pseudo-random numbers	CO3	13
2	Concration of pseudo random numbers continued	CO2	
3	Techniques for generating random numbers	CO_3	
5	Tests for Random Numbers	CO_3	
6	Tests for Random Numbers Tests for Random Numbers Continued	CO_3	
7	Random-Variate Generation: Inverse transform technique	CO3	<u> </u>
8	Inverse transform technique continued	CO3	
9	Acceptance-Rejection technique	CO3	
10	Acceptance-Rejection technique, continued	CO3	 L4
		000	
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to \ldots	-	-
1	Usage of random numbers in Statistical sampling.	CO3	L3
2	Semiconductor Manufacturing.	CO3	L4
al	Deview Ouestiens		
a	Review Questions	-	-
-	Evaluin apparation of psoude random numbers with examples. Montion the	-	-
1	important considerations in selecting a method for generating random	003	L4
	numbers.		
2	Use Chi square test with α =0.05 to test whether data shown below is uniformly	CO3	L4
	distributed or not.		
	Assume critical value 🧵 🤋 💈 20.05,9 =16.9		
	0.34 0.90 0.25 0.89 0.87 0.44 0.12 0.21 0.46 0.67		
	0.83 0.76 0.79 0.64 0.70 0.81 0.94 0.74 0.22 0.74 0.96 0.99 0.77 0.67 0.56 0.41 0.52 0.73 0.99 0.02		
	0.47 0.30 0.17 0.82 0.56 0.05 0.45 0.31 0.78 0.05		
	0.79 0.71 0.23 0.19 0.82 0.93 0.65 0.37 0.39 0.42		
	0.99 0.17 0.99 0.46 0.05 0.66 0.10 0.42 0.18 0.49		
	0.72 0.43 0.56 0.97 0.30 0.94 0.96 0.58 0.73 0.05		
	0.06 0.39 0.84 0.24 0.40 0.64 0.40 0.19 0.79 0.62		
	0.18 0.26 0.97 0.88 0.64 0.47 0.60 0.11 0.29 0.78		
3	Use linear congruential method to generate a sequence of 5 random	COR	LA
	numbers, with given seed 27, increment 43,and constant multiplier 17. modulus		-7
	100.		
4	The sequence of random numbers,0.54, 0.73, 0.98, 0.11,and 0.68 has	CO3	L4
	generated. Use K – S test with α =0.05 to determine if the hypothesis that the		
	numbers are uniformly distributed on the interval [0,1] can be rejected. Take		
	Dα=0.565.		
5	Explain the steps involved in the development of a useful model of input data.	CO3	L4
	Experiences		-
	слрененесэ	-	-
2			
<u> </u>			

Title:	Input Modeling	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Distinguish between modeling methods that are suitable for discrete-event,	CO4	L4

	and hybrid systems, and apply these methods to simple systems.		
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Input Modeling: Data Collection; Identifying the distribution with data	CO4	L2
2	Parameter estimation	CO4	L2
3	Goodness of Fit Tests	CO4	L2
4	Fitting a non-stationary Poisson process	CO4	L3
5	Selecting input models without data	CO4	L4
6	Multivariate and Time-Series input models	CO4	L4
7	Estimation of Absolute Performance: Types of simulations with respect to output analysis	CO4	L4
8	Stochastic nature of output data	CO4	L4
9	Stochastic nature of output data continued	CO4	L4
10	Measures of performance and their estimation, Contd.	CO4	L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Input models are required to test any simulation system.	CO4	L2
2	Construction Engineering	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the types of simulation with respect to output analysis. Give Examples.	CO4	L4
2	Briefly explain the confidence –interval estimation method.	CO4	L4
3	Explain output analysis for termination simulation.	CO4	L2
4	Explain different steps in the development of useful model of input data with example.	CO4	L3
5	i) Explain different ways to obtain information about a process even if data are not available.	CO4	L2
	in Explain uniferent suggested estimates for distribution used in simulation.		
	Experiences	_	_
1			-
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code) :	15CS8	34	Sem:	VIII		Marks:	20		Time	60	60 minutes			
Cours	se:														
-	-	Note: A	Nsw	er all que	stions, e	each c	arry equa	l marks	5. Modi	ıle : 3, 4		Marks	CO	Level	
1	а	Explair	n gen	eration of	⁻ pseudo	rando	m numbe	ers with	examp	les.		5	CO3	L2	
	b	Use Ch uniforn Assum 0.34 0.83 0.96 0.47	ni squ nly di e crit 0.90 0.76 0.76 0.74 0.99 0.02 0.30	are test vistributed istributed 0 0.25 0 0.79 0 0.77 0 0.17	with a=0. or not. • X ² 0.05.9=1 0.89 0.64 0.67 0.82	05 to t 6.9 0.87 0.70 0.56 0.56	est wheth 0.44 0.81 0.41 0.05	0.12 0.94 0.52 0.45	shown 0.21 0.74 0.73 0.31	0.46 0.22 0.99 0.78		10	CO3	L3	

		0.70	0.71	0.22	0.10	0.82	0.02	0.65	0.27	0.20			
		0.79	0.42	0.23	0.19	0.02	0.93	0.05	0.37	0.39			
		0.99	0.17	0.99	0.46	0.05	0.66	0.10	0.42	0.18			
			0.49										
		0.37	0.51	0.54	0.01	0.81	0.28	0.69	0.34	0.75			
		0.72	0.49	056	0.07	0.20	0.04	0.06	058	0.72			
		0.72	0.45	0.90	0.97	0.30	0.94	0.90	0.90	0.75			
		0.06	0.39	0.84	0.24	0.40	0.64	0.40	0.19	0.79			
			0.62										
		0.18	0.26	0.97	0.88	0.64	0.47	0.60	0.11	0.29			
			0.78										
				aruanti	almath	ad ta aa	norato		noo of r	randam		<u> </u>	
2	d	ose tir	lear cor ≏rs with	igrueriu naiven s	al metric eed 27	increme	nt 12 ar	a seque	tant mu	tinlier 17	5	03	L2
		modu	lus 100.	givens									
	b	The se	The sequence of random numbers,0.54, 0.73, 0.98, 0.11,and 0.68 has										L3
		gener	ated. Us	se K – S	test with	α=0.0	5 to dete	ermine if	f the hyp	oothesis that			
		the nu	mbers a	are unifo	ormly dis	stributec -	d on the	interva	l [0,1]				
		can be	e rejecte	ed. Take	D a =0.50	5.							
3	a	Explai	n accer	tance-r	Piection	technia	ue Forr	noission	distribu	tion	8	CO4	
	ŭ	Gener	ate 5 pc	bission v	ariates v	vith mea	an α =0.2	5 [The r	andom	numbers are	U	004	-4
		0.073	0.0693,	0.945 0.	0739 0.0	14 0.034	12]	-					
	b	Explai	n invers	e transf	orm tecł	nniqes o	of produc	cing ran	dom var	iates for	7	CO4	L4
			i)Expc	onential	distribut	ion. ii)	weibull	distribut	ion.				
		E	P	<u> </u>			00.						
4	a	Explai	n the di ble	fferent w	a is not	8	CO4	L3					
	b	Explai	n the ste	eps invo	lved in t	he deve	lopmen	t of a us	seful mo	del of input	7	CO4	L3
		data									•		

b. Assignment – 2

	Model Assignment Questions			
Crs Code:	15CS834 Sem: VIII Marks: 5 Time:			
Course:	System Modeling and Simulation			
SNo	Assignment Description	Marks	со	Level
1	Explain generation of pseudo random numbers with examples. Mention the important considerations in selecting a method for generating random numbers	5	CO3	L2
2	Use linear congruential method to generate a sequence of 5 random numbers, with given seed 27, increment 43,and constant multiplier 17, modulus 100.	5	CO3	L2
3	The sequence of random numbers,0.54, 0.73, 0.98, 0.11,and 0.68 has generated. Use K – S test with a =0.05 to determine if the hypothesis that the numbers are uniformly distributed on the interval [0,1] can be rejected. Take D a =0.565.	5	CO3	L4
4	Test whether the 2^{nd} , 9^{th} , 16^{th} Numbers in the following sequence are auto correlated by taking α =0.05.take Z= $_2$ =1.96. 0.38 0.48 0.36 0.01 0.54 0.34 0.96 0.06 0.61 0.85 0.48 0.86 0.14 0.86 0.89, 0.37 0.49 0.60 0.04 0.83 0.42 0.83 0.37 0.21 0.90 0.89 0.79 0.77 0.99 0.95 0.27, 0.41 0.81 0.96 0.31 0.09 0.06 0.23 0.77 0.73 0.47 0.13 0.55 0.11 0.75 0.36 0.25, 0.23 0.72 0.60 0.84 ,070 0.30 0.26 0.38 0.05 0.19 0.73 0.44	5	CO3	L2
5	Discuss different types of continuous distributions	5	CO3	L2
6	A Production process manufactures computer chips on	5	CO3	L4

	the average at 2% non conforming. Everyday, a random sample of size 50 is taken from the process, if the sample contains more than two non conforming chips ,the process will be stopped .compute the probability that the process is stopped by the sampling scheme.			
7	Explain linear congruential method. Write three way of achieving maximal period	5	CO3	L5
8	The sequence of random number 0.54,0.73,0.98,0.11 and 0.68 has been generated. Use Kolmogorov—Smiron test with α =0.05 to determine if the hypothesis that the numbers are uniformly distributed on the interval [0,1]can be rejected. Take D α =0.565.	5	CO3	L2
9	What is acceptance rejection technique? Generate three poission variates with mean α =0.2.The random numbers are 0.4347 0.4146 0.8353 0.9952 0.8004 0.7945 0.1530	5	CO3	L4
10	What are pseudo random numbers? What are the problem that occurs while generating pseudo random numbers? Also list the important consideration during generation of random numbers.	5	CO3	L3
11	Briefly explain different techniques for generating random numbers.	5	CO3	L4
12	Consider the following sequence of five numbers: 0.44 0.81 0.14 0.05 0.93 are generated. Kolmogorov—Smiron test with α =0.05 to test the uniformity property of random number generated.	5	CO4	L2
13	Explain inverse transform techniques of producing random variates for i)Exponential distribution. ii) weibull distribution.	5	CO4	L3
14	Generate three poission variates with mean a =0.2. [The random numbers are 0.4347 0.4146 0.8353 0.9952 0.8004]	5	CO4	L2
15	Explain the steps involved in the development of a useful model of input data.	5	CO4	L4
16	Explain the different ways of selecting input model when data is not available	5	CO4	L4

D3. TEACHING PLAN - 3

Title:	Verification, Calibration and Validation	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyze validation and verification of simulation models using different validation models for model building	CO5	L5
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Measures of performance and their estimation,	CO5	L4
2	Output analysis for terminating simulations Continued,	CO5	L4
3	Output analysis for terminating simulations Continued,	CO5	L4
4	Output analysis for steady-state simulations.	CO5	L5
5	Verification, Calibration And Validation: Optimization: Model building	CO5	L2
6	verification and validation	CO5	L5
7	Verification of simulation models	CO5	L5
8	Verification of simulation models	CO5	L5
9	Calibration and validation of models	CO5	L5
10	Optimization via Simulation	CO5	L6
С	Application Areas	-	-
-	Students should be able employ / apply the Module learning to	-	-
1	Used in Supply chain management systems	CO5	L4
2	Used in inventory modeling systems, Transportation modeling system	CO5	L5

d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Write a short note on	CO5	L2
	Optimization via simulation		
2	Explain with neat diagram model building and validation and verification	CO5	L4
	process.		
3	Describe the three steps approach to validation by Naylor and finger	CO5	L3
4	With a neat diagram explain iterative process of calibrating model.	CO5	L4
5	Explain different verification techniques.	CO5	L4
е	Experiences	-	-
1		CO5	L2
2		CO5	L4

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code	15CS834	Sem:	VIII	Marks:	20	Time:	60 Minute	s		
Cour	se:										
-	-	Note: Answ	er all quest	ions, each d	arry equal ı	marks.		Marks	СО	Level	
1	а	Test whethe	er the follow	ing data fol	lows Poisso	n distributio	n using chi-	8	CO5	L3	
		square test	juare test of goodness of fit. With mean α =0.05 . Take $\neg ^{2}_{0.05.5}$ =11.1								
	b	Explain the	Explain the suggestions given for use verification process							L2	
					OR						
2	а	Briefly expla	ain the confi	dence –inte	erval estimat	ion method.		8	CO5	L4	
	b	Explain diffe with examp	erent steps i Ile.	n the develo	opment of u	seful model	of input data	a 7	CO5	L2	
3	а	Explain out	put analysis	for steady-s	state simulat	ions		15	CO5	L5	
					OR						
4	а	Explain with process.	xplain with neat diagram model building and validation and verificat							L5	
	b	Describe th	escribe the three steps approach to validation by Naylor and finger						CO5	L5	

b. Assignment – 3

	Model Assignment Questions																			
Crs Code:	17IS63 Sem:		VI			Marl	KS:		3	0			Tim	e: 7	5 Minuts					
Course:																				
SNo			As	sign	mer	it De	sci	ript	tior	۱					Marks	со	Level			
1	Explain acceptar	nce -	reje	ctior	ו tec	hniq	ue.	for	r P	ois	sor	ו dis	tribu	ution.	5	CO5	L5			
	Generate 5 Poisso	on va	ariate	es wi	th m	ean	α=	0.2	5 l	l he	e ra	ndoi	n nı	Imbers						
	are 0.073 0.0693,	0.94	5 0.0	739	0.01	4 O.C)34	2]												
2	Test whether the	follo	wing	g dat	a fol	lows	s Po	ois	sor	۱d	istr	ibuti	on u	ising chi-	5	CO5	L3			
	square test of go	odne	ess o	f fit. `	With	me	an	α=	0.0	5.	Tak	e 7 ª	0.05,5	=11.1						
				_																
	Arrival/period	0	1	2	3	4	5	6	7	8	9	10	11							
	Frequency 12 10 19 17 10 8 7 5 5 3 3 1																			
3	Describe initializa	Describe initialization bias in steady state simulation.										5	CO5	L3						
4	xplain with a neat diagram verification of simulation model										5	CO5	L3							
5	Describe with a n	eat c	diagr	am i	terat	ive p	oro	ces	s c	of c	alik	oratir	ng a	model.	5	CO5	L3			

	Which are three steps that aid in the validation process?			
6	Explain with a neat diagram model building, verification and validation	5	CO5	L3
	process			
7	Describe the three steps approach to validation by Naylor and Finger.	5	CO5	L2,L3
8	Explain with a neat diagram model building, verification and validation.	5	CO5	L3
9	Write short note on Optimization via simulation	5	CO5	L3
10	What is model reasonableness & explain how current contents and total	5	CO5	L3
	count can verify it?			
11	Briefly explain the validation of input-output transformations of the	5	CO5	L3
	model and the various techniques used?			
12	Explain calibration and validation of models	5	CO5	L4

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	System Simulation and Modeling Month.	/ Year	May /	2020
Crs C	ode:	15CS834 Sem: VIII Marks: 80 Time:		180 m	inutes
Mod ule		Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Level
1	а	Define Simulation, Simulation model, entities, Measures-of-performance and activities.	06	CO1	L1
	b	List at least five circumstances where the simulation is appropriate tool and not appropriate	05	CO1	L2
	С	Explain the Concept of system with any one live Example.	05	CO1	L1
		Or			
2	а	Discuss the various types of models of a System	06	CO1	L4
	b	What is System and System environment? Explain the components of c system with Examples?	10	CO1	L4
3	a	Six dump trucks are used to haul coal from the entrance of a mine to rai road. Each truck is loaded by one of two loaders. After loading, a truck immediately moves to the scale, to be weighed as soon as possible. Both the loaders and the scale have a first –come first served waiting line fo trucks. Travel time from a loader to scale is considered negligible. Afte being weighed a truck begins travel time (during which time truck uploads) and then afterwards returns to the loader queue. The activities of loading time, weighing time and travel time are given in the following table. Loading Time 10 5 5 10 15 10 10 Weighing Time 12 12 12 16 12 16 Travel Time 60 100 40 40 80 End of simulation is completion of two weightings from the scale. Depic the simulation table and estimate the loader and scale utilization. Assume that five of the trucks are at the loaders and one is at the scale at time 0.		CO2	L2
	b	What are the two categories of activities? Explain the three phases or activity scanning approach?	f 06	CO2	L4
		Or			
4	a	For the above Dump Truck problem Calculate the Total busy time of both the loaders of the scale average loader and scale utilization. Assume <u>5</u> Trucks are at the loaders and one is at the scale at time '0' stopping time TE=64 min	12	CO2	L3
	b	Briefly define any five concepts used in discrete event simulation.	04	CO2	L4
5	а	Consider the grocery store with one checkout counter. Customer arrives	s 08	CO3	L2

		at this checkout counter at random from 1 to 10 mins apart. Service time vary from 1 to 6 mins with probability as shown below. Prepare the simulation table for 10 customers and find out average waiting time of customer in queue, idle time of server and average service time. Service Time : 1,2,3,4,5,6 Probability : 0.05,0.10,0.20,0.30,0.25,0.10 RD for arrival: 91,72,15,94,30,92,75,23,30 RD for service:84,10,74,53,17,79,91,67,89,38. Assume first customer arrives at t =0.			
	b	Discuss in detail about the various elements of any general Queuing system. Further explain the need for simulation in this environment and the various measures used to evaluate the system.	08	CO3	L2
		or			
6	а	Use the Linear consequential method to generate a sequence of four two-digit random numbers with X0=27,q=17,C=43 and m=100. What the effect of FIFTH two digit random integer on the above numbers.	10	CO3	L2,L2
	b	Mention the important considerations for the selection of routines to generate random numbers	06	CO3	L4
7	а	Discuss how the sample mean is estimated under normal and POISSION	10	CO4	L2
		distributions.			
	b	Explain how the method of histograms can be used to identify the shape of a distribution.	06	CO4	L3
		or			
8	а	With Examples Explain output analysis.	10	CO4	L5
	b	Discuss in brief the output analysis for steady-state simulations.	06	CO4	L3
9	а	Explain the types of simulation with respect to output analysis. Give at	10	CO5	L3
		least two Examples.	- 0	00-	
	b	Briefly discuss the commonly used methods in the verification process.	06	005	L3
10		Or Evaluation and validation of models	06	COF	
10	d	Explain Calibration and Validation of models.	00	CO5	
	a	Explain in Detail about the model building, verifying and validation in the model building process through a diagram?	10	005	L3

2. SEE Important Questions

Cours	se:	System Simulation	and Modeli	ng			Month	n / Year	May/2	020
Crs C	ode:	15CS834 Ser	n: VI		Marks:	80	Time:		180 Mi	nutes
	Note	Answer all FIVE ful	l questions.	All questio	ns carry e	equal mark	KS.	-	-	
Mod	Qno.	Important Questio	า					Marks	СО	Year
ule										
1	1	What is System an	d System Er	nvironment	?			04	CO1	2016
	2	What are advantag		05	CO1	2016				
	3	Explain the terms:	(a) entity (b)	attribute (c) activity	(d) event 8	k (e) state in	10	CO1	2017
		the system simulation context?								
	4	Explain the concep	ot of Discrete	e-Event Sir	nulation.			08	CO1	2017
	5	Explain in detail the	e event sche	eduling/tin	ne advano	ce algorith	ım.	10	CO1	2017
2	1	Find mean and var	iance of the	die tossing	g experim	ent . Assu	me the die is	10	CO2	2016
		loaded so that the	probability I	that given f	ace land	up propor	tional to the			
		number of spots sł	nowing .							
	2	² The time to failure of a light bulb is weibull distributed with V=1.8.10 ³							CO2	2016
	hours.									
		i. What fraction of I	oulbs are ex	pected to l	ast longe	r than mea	an lifetime?			
15CS8	5CS834 Copyright ©2017. cAAS. All r							All rights r	reserved	

		ii. What is the Median lifetime of a light bulb?			
	3	Explain the properties of poison process.	6	CO2	2018
	4	Explain the characteristics of Queuing System. List different queuing notations.	12	CO2	2018
	5	List the Steady State Parameters of M M 1 queue	05	CO2	2018
				001	
3	1	Explain the generation of Pseudo-random Numbers.	06	CO3	2016
	2	Explain the combined linear congruential random number generation method?	07	CO3	2016
	3	Generate a sequence of 15 random numbers for which seed is 342, constant multiplier is 20, increment is 45 and modulus is 30	08	CO3	2017
	4	What is inverse transform technique? Explain how it is used for producing random variants for exponential distribution and uniform distribution.	08	CO3	2014
	5	With example explain the various types of discrete distributions.	10	CO3	2018
					-
4	1	State the four steps involved in the development of an input model?	07	CO4	2018
	2	Explain identifying the distribution with data with example.	08	CO4	2014
	3	Define co variance & correlation?	05	CO4	2016
	4	What are the types of simulations with respect to output analysis?	05	CO4	2014
	5	Explain stochastic nature of output data with example.	10	CO4	2017
5	1	Explain how probabilities and quantiles can be estimated from summary data?	07	CO5	2016
	2	With illustrative examples explain output analysis of steady-state simulations.	10	CO5	2017
	3	How model can be build verification and validate? Explain with diagram.	06	CO5	2017
	4	Describe in detail the three step approach for model validation?	07	CO5	2016
	5	Briefly explain the validation of input-output transformations of the model and the various techniques used?	06	CO5	2015

Course Outcome Computation

Academic Year:

Odd / Even semester												
INTERNAL TEST				T1	T2							
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO6	
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS												
USN-1 USN-2 USN-3 USN-4 USN-5												
USN-6												
Average Attainment	CO	2.5		2.75		2.33		3		3		1.5
LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%												

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program		PO1		PO3		PO3		PO1		PO12		PO12		
Weight of CO - PO		3		1 CO2		3 CO3		2 CO4		2 CO5		3 CO6		
Course Outcom	ne	CO1												
Test/Quiz/Lab			T1							T2				
QUESTION NO MAX MARKS		Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	(
USN-1														
USN-2														
USN-3														
USN-4														
USN-5 USN-6														
Average (Attainment	0													